1
|
Kanarek P, Breza-Boruta B, Bogiel T. In the Depths of Wash Water: Isolation of Opportunistic Bacteria from Fresh-Cut Processing Plants. Pathogens 2024; 13:768. [PMID: 39338959 PMCID: PMC11435197 DOI: 10.3390/pathogens13090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The fruit and vegetable industry in post-harvest processing plants is characterized by a substantial consumption of water resources. Wash waters may serve as an environment for the periodic or permanent habitation of microorganisms, particularly if biofilm forms on the inner walls of tanks and flushing channels. Despite the implementation of integrated food safety monitoring systems in numerous countries, foodborne pathogens remain a global public health and food safety concern, particularly for minimally processed food products such as vegetables and fruits. This necessitates the importance of studies that will explore wash water quality to safeguard minimally processed food against foodborne pathogen contamination. Therefore, the current study aimed to isolate and identify bacteria contaminating the wash waters of four fresh-cut processing plants (Poland) and to evaluate the phenotypic antibiotic resistance profiles in selected species. Bacteria were isolated using membrane filtration and identified through mass spectrometry, followed by antibiotic susceptibility testing according to EUCAST guidelines. The results revealed that the level of contamination with total aerobic bacteria in the water ranged from 1.30 × 106 cfu/mL to 2.54 × 108 cfu/mL. Among the isolates, opportunistic pathogens including Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella oxytoca, Klebsiella pneumoniae, Serratia marcescens, and Proteus vulgaris strains were identified. An especially noteworthy result was the identification of cefepime-resistant K. oxytoca isolates. These findings highlight the importance of monitoring the microbial microflora in minimally processed foods and the need for appropriate sanitary control procedures to minimize the risk of pathogen contamination, ensuring that products remain safe and of high quality throughout the supply chain.
Collapse
Affiliation(s)
- Piotr Kanarek
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Barbara Breza-Boruta
- Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 6 Bernardyńska Street, 85-029 Bydgoszcz, Poland;
| | - Tomasz Bogiel
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
2
|
Paparella A, Kongala PR, Serio A, Rossi C, Shaltiel-Harpaza L, Husaini AM, Ibdah M. Challenges and Opportunities in the Sustainable Improvement of Carrot Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:2092. [PMID: 39124210 PMCID: PMC11314595 DOI: 10.3390/plants13152092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
From an agricultural perspective, carrots are a significant tap root vegetable crop in the Apiaceae family because of their nutritional value, health advantages, and economic importance. The edible part of a carrot, known as the storage root, contains various beneficial compounds, such as carotenoids, anthocyanins, dietary fiber, vitamins, and other nutrients. It has a crucial role in human nutrition as a significant vegetable and raw material in the nutraceutical, food, and pharmaceutical industries. The cultivation of carrot fields is susceptible to a wide range of biotic and abiotic hazards, which can significantly damage the plants' health and decrease yield and quality. Scientific research mostly focuses on important biotic stressors, including pests, such as nematodes and carrot flies, as well as diseases, such as cavity spots, crown or cottony rot, black rot, and leaf blight, caused by bacteria, fungi, and oomycetes. The emerging challenges in the field include gaining a comprehensive understanding of the interaction between hosts and pathogens in the carrot-pathogen system, identifying the elements that contribute to disease development, expanding knowledge of systemic treatments, exploring host resistance mechanisms, developing integrated control programs, and enhancing resistance through breeding approaches. In fact, the primary carrot-growing regions in tropical and subtropical climates are experiencing abiotic pressures, such as drought, salinity, and heat stress, which limit carrot production. This review provides an extensive, up-to-date overview of the literature on biotic and abiotic factors for enhanced and sustainable carrot production, considering the use of different technologies for the shelf-life extension of carrots. Therefore, it addresses the current issues in the carrot production chain, opening new perspectives for the exploration of carrots both as a food commodity and as a source of natural compounds.
Collapse
Affiliation(s)
- Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.P.); (A.S.); (C.R.)
| | - Prasada Rao Kongala
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.P.); (A.S.); (C.R.)
| | - Chiara Rossi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (A.P.); (A.S.); (C.R.)
| | - Liora Shaltiel-Harpaza
- Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel;
- Environmental Sciences Department, Faculty of Sciences and Technology, Tel Hai College, P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Amjad M. Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar 19005, Jammu and Kashmir, India;
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| |
Collapse
|
3
|
Kurniawan H, Arief MAA, Lohumi S, Kim MS, Baek I, Cho BK. Dual imaging technique for a real-time inspection system of foreign object detection in fresh-cut vegetables. Curr Res Food Sci 2024; 9:100802. [PMID: 39100806 PMCID: PMC11294706 DOI: 10.1016/j.crfs.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Fresh-cut vegetables are a food product susceptible to contamination by foreign materials (FMs). To detect a range of potential FMs in fresh-cut vegetables, a dual imaging technique (fluorescence and color imaging) with a simple and effective image processing algorithm in a user-friendly software interface was developed for a real-time inspection system. The inspection system consisted of feeding and sensing units, including two cameras positioned in parallel, illuminations (white LED and UV light), and a conveyor unit. A camera equipped with a long-pass filter was used to collect fluorescence images. Another camera collected color images of fresh-cut vegetables and FMs. The feeding unit fed FMs mixed with fresh-cut vegetables onto a conveyor belt. Two cameras synchronized programmatically in the software interface simultaneously collected fluorescence and color image samples based on the region of interest as they moved through the conveyor belt. Using simple image processing algorithms, FMs could be detected and depicted in two different image windows. The results demonstrated that the dual imaging technique can effectively detect potential FMs in two types of fresh-cut vegetables (cabbage and green onion), as indicated by the combined fluorescence and color imaging accuracy. The test results showed that the real-time inspection system could detect FMs measuring 0.5 mm in fresh-cut vegetables. The results showed that the combined detection accuracy of FMs in the cabbage (95.77%) sample was superior to that of green onion samples (87.89%). Therefore, the inspection system was more effective at detecting FMs in cabbage samples than in green onion samples.
Collapse
Affiliation(s)
- Hary Kurniawan
- Department of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
- Department of Agricultural Engineering, Faculty of Food Technology and Agroindustry, University of Mataram, West Nusa Tenggara, 83126, Indonesia
| | - Muhammad Akbar Andi Arief
- Department of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Santosh Lohumi
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Moon S. Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Insuck Baek
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States, Department of Agriculture, Beltsville, MD, 20705, USA
| | - Byoung-Kwan Cho
- Department of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
- Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| |
Collapse
|
4
|
Katırcıoğlu B, Navruz-Varlı S. Effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. Front Nutr 2024; 11:1350534. [PMID: 38962447 PMCID: PMC11220264 DOI: 10.3389/fnut.2024.1350534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Allium species are among the most widely cultivated vegetables for centuries for their positive effects on human health and their variety of uses in food preparation and cooking. Preparation and cooking processes create chemical changes that can affect the concentration and bioavailability of bioactive molecules. Understanding the changes in bioactive compounds and bioactive activities in Allium vegetables resulting from preparation and cooking processes is essential for better retention of these compounds and better utilization of their health benefits. This study aimed to investigate the effects of different preparation and cooking processes on the bioactive molecules of Allium vegetables. This review concludes that bioactive compounds in Allium vegetables are affected by each preparation and cooking process depending on variables including method, time, temperature. Owing to differences in the matrix and structure of the plant, preparation and cooking processes show different results on bioactive compounds and bioactive activities for different vegetables. Continued research is needed to help fill gaps in current knowledge, such as the optimal preparation and cooking processes for each Allium vegetable.
Collapse
Affiliation(s)
- Beyza Katırcıoğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| | - Semra Navruz-Varlı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Türkiye
| |
Collapse
|
5
|
Santos MI, Grácio M, Silva MC, Pedroso L, Lima A. One Health Perspectives on Food Safety in Minimally Processed Vegetables and Fruits: From Farm to Fork. Microorganisms 2023; 11:2990. [PMID: 38138132 PMCID: PMC10745503 DOI: 10.3390/microorganisms11122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
While food markets and food production chains are experiencing exponential growth, global attention to food safety is steadily increasing. This is particularly crucial for ready-to-eat products such as fresh-cut salads and fruits, as these items are consumed raw without prior heat treatment, making the presence of pathogenic microorganisms quite frequent. Moreover, many studies on foodborne illnesses associated with these foods often overlook the transmission links from the initial contamination source. The prevention and control of the dissemination of foodborne pathogens should be approached holistically, involving agricultural production, processing, transport, food production, and extending to final consumption, all while adopting a One Health perspective. In this context, our objective is to compile available information on the challenges related to microbiological contamination in minimally handled fruits and vegetables. This includes major reported outbreaks, specific bacterial strains, and associated statistics throughout the production chain. We address the sources of contamination at each stage, along with issues related to food manipulation and disinfection. Additionally, we provide potential solutions to promote a healthier approach to fresh-cut fruits and vegetables. This information will be valuable for both researchers and food producers, particularly those focused on ensuring food safety and quality.
Collapse
Affiliation(s)
- Maria Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
- CECAV—Centre of Animal and Veterinary Science, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Madalena Grácio
- Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal;
| | - Mariana Camoesas Silva
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
- CECAV—Centre of Animal and Veterinary Science, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal; (M.C.S.); (L.P.)
- CECAV—Centre of Animal and Veterinary Science, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
6
|
Cuggino SG, Possas A, Posada-Izquierdo GD, Theumer MG, Pérez-Rodríguez F. Unveiling Fresh-Cut Lettuce Processing in Argentine Industries: Evaluating Salmonella Levels Using Predictive Microbiology Models. Foods 2023; 12:3999. [PMID: 37959118 PMCID: PMC10647251 DOI: 10.3390/foods12213999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
A survey was performed to gather information on the processing steps, conditions, and practices employed by industries processing ready-to-eat (RTE) leafy vegetables in Argentina. A total of seven industries participated in the survey. A cluster analysis of the data obtained was performed to identify homogeneous groups among the participating industries. The data collected were used as inputs of two predictive microbiology models to estimate Salmonella concentrations after chlorine washing, during storage and distribution of final products, and to rank the different practices according to the final estimated Salmonella levels. Six different clusters were identified by evaluating the parameters, methods, and controls applied in each processing step, evidencing a great variability among industries. The disinfectant agent applied by all participating industries was sodium hypochlorite, though concentrations and application times differed among industries from 50 to 200 ppm for 30 to 110 s. Simulations using predictive models indicated that the reductions in Salmonella in RTE leafy vegetables would vary in the range of 1.70-2.95 log CFU/g during chlorine-washing depending on chlorine concentrations applied, washing times, and vegetable cutting size, which varied from 9 to 16 cm2 among industries. Moreover, Salmonella would be able to grow in RTE leafy vegetables during storage and distribution, achieving levels of up to 2 log CFU/g, considering the storage and transportation temperatures and times reported by the industries, which vary from 4 to 14 °C and from 18 to 30 h. These results could be used to prioritize risk-based sampling programs by Food Official Control or determine more adequate process parameters to mitigate Salmonella in RTE leafy vegetables. Additionally, the information gathered in this study is useful for microbiological risk assessments.
Collapse
Affiliation(s)
- Sofia Griselda Cuggino
- Departamento de Fundamentación Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba X5000, Argentina;
| | - Arícia Possas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain; (G.D.P.-I.); (F.P.-R.)
| | - Guiomar Denisse Posada-Izquierdo
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain; (G.D.P.-I.); (F.P.-R.)
| | - Martin Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba X5000, Argentina
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain; (G.D.P.-I.); (F.P.-R.)
| |
Collapse
|
7
|
Koutsoumanis K, Ordóñez AA, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Banach J, Ottoson J, Zhou B, da Silva Felício MT, Jacxsens L, Martins JL, Messens W, Allende A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVHs). Part 1 (outbreak data analysis, literature review and stakeholder questionnaire). EFSA J 2023; 21:e08332. [PMID: 37928944 PMCID: PMC10623241 DOI: 10.2903/j.efsa.2023.8332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
The contamination of water used in post-harvest handling and processing operations of fresh and frozen fruit, vegetables and herbs (ffFVHs) is a global concern. The most relevant microbial hazards associated with this water are: Listeria monocytogenes, Salmonella spp., human pathogenic Escherichia coli and enteric viruses, which have been linked to multiple outbreaks associated with ffFVHs in the European Union (EU). Contamination (i.e. the accumulation of microbiological hazards) of the process water during post-harvest handling and processing operations is affected by several factors including: the type and contamination of the FVHs being processed, duration of the operation and transfer of microorganisms from the product to the water and vice versa, etc. For food business operators (FBOp), it is important to maintain the microbiological quality of the process water to assure the safety of ffFVHs. Good manufacturing practices (GMP) and good hygienic practices (GHP) related to a water management plan and the implementation of a water management system are critical to maintain the microbiological quality of the process water. Identified hygienic practices include technical maintenance of infrastructure, training of staff and cooling of post-harvest process water. Intervention strategies (e.g. use of water disinfection treatments and water replenishment) have been suggested to maintain the microbiological quality of process water. Chlorine-based disinfectants and peroxyacetic acid have been reported as common water disinfection treatments. However, given current practices in the EU, evidence of their efficacy under industrial conditions is only available for chlorine-based disinfectants. The use of water disinfection treatments must be undertaken following an appropriate water management strategy including validation, operational monitoring and verification. During operational monitoring, real-time information on process parameters related to the process and product, as well as the water and water disinfection treatment(s) are necessary. More specific guidance for FBOp on the validation, operational monitoring and verification is needed.
Collapse
|
8
|
Derossi A, Di Palma E, Moses JA, Santhoshkumar P, Caporizzi R, Severini C. Avenues for non-conventional robotics technology applications in the food industry. Food Res Int 2023; 173:113265. [PMID: 37803578 DOI: 10.1016/j.foodres.2023.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Robots in manufacturing alleviate hazardous environmental conditions, reduce the physical/mental stress of the workers, maintain high precision for repetitive movements, reduce errors, speed up production, and minimize production costs. Although robots have pervaded many industrial sectors and domestic environments, the experiments in the food sectors are limited to pick-and-place operations and meat processing while we are assisting new attention in gastronomy. Given the great performances of the robots, there would be many other intriguing applications to explore which could usher the transition to precision food manufacturing. This review wants open thoughts and opinions on the use of robots in different food operations. First, we reviewed the recent advances in common applications - e.g. novel sensors, end-effectors, and robotic cutting. Then, we analyzed the use of robots in other operations such as cleaning, mixing/kneading, dough manipulation, precision dosing/cooking, and additive manufacturing. Finally, the most recent improvements of robotics in gastronomy with their use in restaurants/bars and domestic environments, are examined. The comprehensive analyses and the critical discussion highlighted the needs of further scientific understanding and exploitation activities aimed to fill the gap between the laboratory-scale results and the validation in the relevant environment.
Collapse
Affiliation(s)
- A Derossi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| | - E Di Palma
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, MoFPI, Govt. of India, Thanjavur, Tamil Nadu 613005, India
| | - P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, MoFPI, Govt. of India, Thanjavur, Tamil Nadu 613005, India
| | - R Caporizzi
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy.
| | - C Severini
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Italy
| |
Collapse
|
9
|
Pasta C, Russo V, Bilucaglia M, Licitra G, Mangione G, Micheletto V, Rossi F, Zito M. Can Traditional Food Product Communication Convey Safety to the Younger Generations? The Role of Sustainable Packaging. Foods 2023; 12:2754. [PMID: 37509846 PMCID: PMC10379774 DOI: 10.3390/foods12142754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional food products (TFPs) represent a defining part of one's culture, identity, and heritage with crucial economic, cultural, and environmental benefits in society. Younger generations have a positive idea of TFPs, even if this does not lead to actual purchase, possibly due to the fact that they are often perceived to not meet safety criteria. This study focuses on product communication (CP) and packaging referring to the territory (PT) and to sustainability (SP) in order to verify if these have a direct or mediated impact on perceived product safety (PPS). A structural equation model was conducted on a sample of 1079 young Italian cheese consumers. The results allowed us to confirm the hypothesized impact of CP on PPS through the mediation of PT and, particularly, SP. SP has a crucial communicative role in the model, demonstrating the ability to enhance the perception of the safety of TFPs. This research adds to the knowledge in the field of TFPs, focusing on communication and sustainable packaging as crucial factors conveying healthiness, nutritiousness, and perceived safety, consequently leading to a greater diffusion of the products themselves in the market.
Collapse
Affiliation(s)
- Catia Pasta
- Consorzio per La Ricerca Nel Settore Della Filiera Lattiero-Casearia e dell'Agroalimentare (CoRFiLaC), 97100 Ragusa, Italy
| | - Vincenzo Russo
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", Università IULM, 20143 Milan, Italy
- Behavior and Brain Lab IULM-Neuromarketing Research Center, Università IULM, 20143 Milan, Italy
| | - Marco Bilucaglia
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", Università IULM, 20143 Milan, Italy
- Behavior and Brain Lab IULM-Neuromarketing Research Center, Università IULM, 20143 Milan, Italy
| | - Giuseppe Licitra
- Department of Agricolture, Food and Environment (Di3A), Università di Catania, 95123 Catania, Italy
| | - Guido Mangione
- Department of Agricolture, Food and Environment (Di3A), Università di Catania, 95123 Catania, Italy
| | - Valeria Micheletto
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", Università IULM, 20143 Milan, Italy
| | - Federica Rossi
- Behavior and Brain Lab IULM-Neuromarketing Research Center, Università IULM, 20143 Milan, Italy
| | - Margherita Zito
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", Università IULM, 20143 Milan, Italy
- Behavior and Brain Lab IULM-Neuromarketing Research Center, Università IULM, 20143 Milan, Italy
| |
Collapse
|
10
|
Finger JAFF, Santos IM, Silva GA, Bernardino MC, Pinto UM, Maffei DF. Minimally Processed Vegetables in Brazil: An Overview of Marketing, Processing, and Microbiological Aspects. Foods 2023; 12:foods12112259. [PMID: 37297503 DOI: 10.3390/foods12112259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The global demand for minimally processed vegetables (MPVs) has grown, driven by changes in the population's lifestyle. MPVs are fresh vegetables that undergo several processing steps, resulting in ready-to-eat products, providing convenience for consumers and food companies. Among the processing steps, washing-disinfection plays an important role in reducing the microbial load and eliminating pathogens that may be present. However, poor hygiene practices can jeopardize the microbiological quality and safety of these products, thereby posing potential risks to consumer health. This study provides an overview of minimally processed vegetables (MPVs), with a specific focus on the Brazilian market. It includes information on the pricing of fresh vegetables and MPVs, as well as an examination of the various processing steps involved, and the microbiological aspects associated with MPVs. Data on the occurrence of hygiene indicators and pathogenic microorganisms in these products are presented. The focus of most studies has been on the detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes, with prevalence rates ranging from 0.7% to 100%, 0.6% to 26.7%, and 0.2% to 33.3%, respectively. Foodborne outbreaks associated with the consumption of fresh vegetables in Brazil between 2000 and 2021 were also addressed. Although there is no information about whether these vegetables were consumed as fresh vegetables or MPVs, these data highlight the need for control measures to guarantee products with quality and safety to consumers.
Collapse
Affiliation(s)
- Jéssica A F F Finger
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo 05508-080, SP, Brazil
| | - Isabela M Santos
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, SP, Brazil
| | - Guilherme A Silva
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Sao Paulo 01246-904, SP, Brazil
| | - Mariana C Bernardino
- Department of Nutrition, Faculty of Public Health, University of Sao Paulo, Sao Paulo 01246-904, SP, Brazil
| | - Uelinton M Pinto
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC-CEPID), Sao Paulo 05508-080, SP, Brazil
| | - Daniele F Maffei
- Food Research Center (FoRC-CEPID), Sao Paulo 05508-080, SP, Brazil
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
11
|
Voutsinos-Frantzis O, Karavidas I, Petropoulos D, Zioviris G, Fortis D, Ntanasi T, Ropokis A, Karkanis A, Sabatino L, Savvas D, Ntatsi G. Effects of NaCl and CaCl 2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. PLANTS (BASEL, SWITZERLAND) 2023; 12:1454. [PMID: 37050080 PMCID: PMC10097257 DOI: 10.3390/plants12071454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Corn salad (Valerianella locusta) is a popular winter salad, cultivated as an ingredient for ready-to-eat salads. The application of mild salinity stress (eustress) can increase the flavor and reduce the nitrate content of certain crops but, at the same time, a wrong choice of the eustress type and dose can negatively affect the overall productivity. In this research, the effects of different isosmotic salt solutions, corresponding to two different electrical conductivity (EC) levels, were investigated on the yield and mineral composition of hydroponically grown Valerianella locusta "Elixir". Five nutrient solutions (NS) were compared, including a basic NS used as the control, and four saline NS were obtained by adding to the basic NS either NaCl or CaCl2 at two rates each, corresponding to two isosmotic salt levels at a low and high EC level. Corn salad proved moderately susceptible to long-term salinity stress, suffering growth losses at both low and high EC levels of saline solution, except from the low NaCl treatment. Hence, it appears that mild salinity stress induced by NaCl could be employed as an eustress solution and corn salad could be cultivated with low-quality irrigation water (20 mM NaCl) in hydroponic systems.
Collapse
Affiliation(s)
- Orfeas Voutsinos-Frantzis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Petropoulos
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgios Zioviris
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Fortis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas Ropokis
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Anestis Karkanis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
12
|
Schryvers S, De Bock T, Uyttendaele M, Jacxsens L. Multi-criteria decision-making framework on process water treatment of minimally processed leafy greens. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Galioto F, Zucaro R, Pergamo R. Environmental challenges and perspectives of the fresh-cuts sector in Italy. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1031900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This perspective paper provides insights on the characteristics of the fresh-cut sector in Italy and on the key environmental challenges the sector is currently facing. Specifically, the paper investigates the factors that brought to the development of agro-industrial hubs for fresh-cuts, capable of influencing the income and employment of various local communities in Italy and the factors that contributed causing serious environmental issues, especially related to the disposal of packaging waste and to the consumption and pollution of water resources. Such issues were recently addressed by the EU through dedicated directives and regulations. These regulations require a serious reflection on the strategies to be undertaken for the future of the sector and the surrounding socioeconomic context. The paper concludes with some policy recommendation to overcome existing barriers and, eventually, transform them into opportunities.
Collapse
|
14
|
Effects of lauroyl arginate ethyl (LAE) on pathogen inactivation and quality attributes of spinach leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Multi-Target Alternative Approaches to Promoting Fresh-Cut Carrots' Bioactive and Fresh-like Quality. Foods 2022; 11:foods11162422. [PMID: 36010421 PMCID: PMC9407139 DOI: 10.3390/foods11162422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fresh-cut fruits and vegetables, as near-fresh foods, are a quick and easy solution to a healthy and balanced diet. The rapid degradation of nutritional and sensory quality during the processing and storage of a product is critical and plant-type-dependent. The introduction of disruptive technological solutions in fresh-cut processing, which could maintain fresh-like quality with less environmental impact, is an emerging research concept. The application of abiotic stress treatments (heat shock and UV-C) induces metabolic responses and microbial effects in plant tissues, potentially slowing down several quality senescence pathways. The previously selected combined and single effects of heat shock (100 °C/45 s; in the whole root) and UV-C (2.5 kJ/m2) treatments and two packaging conditions (oriented polypropylene (OPP) vs. micro-perforated OPP films) on controlling critical degradation pathways of fresh-cut carrots and on promoting bioactive and sensory quality during storage (5 °C, 14 days) were studied. Among the tested combinations, synergistic effects on the quality retention of fresh-cut carrots were only attained for applying heat shock associated with micro-perforated OPP film packaging. Its effects on reducing (3.3 Log10 CFU/g) the initial contamination and controlling microbiological spoilage (counts below the threshold limit of 7.5 Log10 CFU/g), increasing the bioactive content (38% and 72% in total phenolic content and chlorogenic acid, respectively), and preserving fresh quality attributes prove to be a viable alternative technology for shredded carrot processing.
Collapse
|
16
|
Raffo A, Aguzzi A, Baiamonte I, Buonocore P, Ferrari Nicoli S, Gambelli L, Moneta E, Nardo N, Peparaio M, Ruggeri S, Sinesio F, Paoletti F. Comparison of nutritional and sensory quality of processed and unprocessed wild rocket leaves during cold storage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|