1
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
2
|
Malany K, Li X, Vogel CFA, Ehrlich AK. Mechanisms underlying aryl hydrocarbon receptor-driven divergent macrophage function. Toxicol Sci 2024; 200:1-10. [PMID: 38603630 PMCID: PMC11199922 DOI: 10.1093/toxsci/kfae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Macrophages play an essential role in the innate immune system by differentiating into functionally diverse subsets in order to fight infection, repair damaged tissues, and regulate inappropriate immune responses. This functional diversity stems from their ability to adapt and respond to signals in the environment, which is in part mediated through aryl hydrocarbon receptor (AHR)-signaling. AHR, an environmental sensor, can be activated by various ligands, ranging from environmental contaminants to microbially derived tryptophan metabolites. This review discusses what is currently known about how AHR-signaling influences macrophage differentiation, polarization, and function. By discussing studies that are both consistent and divergent, our goal is to highlight the need for future research on the mechanisms by which AHR acts as an immunological switch in macrophages. Ultimately, understanding the contexts in which AHR-signaling promotes and/or inhibits differentiation, proinflammatory functions, and immunoregulatory functions, will help uncover functional predictions of immunotoxicity following exposure to environmental chemicals as well as better design AHR-targeted immunotherapies.
Collapse
Affiliation(s)
- Keegan Malany
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Xiaohan Li
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, California, USA
- Center for Health and the Environment, University of California, Davis, California, USA
| | - Allison K Ehrlich
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
3
|
Nebert DW. Gene-Environment Interactions: My Unique Journey. Annu Rev Pharmacol Toxicol 2024; 64:1-26. [PMID: 37788491 DOI: 10.1146/annurev-pharmtox-022323-082311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA;
| |
Collapse
|
4
|
Magnuson JT, Monticelli G, Schlenk D, Bisesi JH, Pampanin DM. Connecting gut microbiome changes with fish health conditions in juvenile Atlantic cod (Gadus morhua) exposed to dispersed crude oil. ENVIRONMENTAL RESEARCH 2023; 234:116516. [PMID: 37399986 DOI: 10.1016/j.envres.2023.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
5
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
6
|
Walter Bock K. Aryl hydrocarbon receptor (AHR): towards understanding intestinal microbial ligands including vitamin B12 and folic acid as natural antagonists. Biochem Pharmacol 2023:115658. [PMID: 37336251 DOI: 10.1016/j.bcp.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
AHR has been identified as ligand-modulated transcription factor and environmental sensor. However, explanation of its multiple agonistic and antagonistic ligands is far from complete. Studies of AHR's role in host-microbiome interaction are currently a fruitful area of research. Microbial products and virulence factors have been identified as AHR agonists. In steady state they are involved in safeguarding intestinal barrier integrity. When virulence factors from pathogenic bacteria are identified by AHR of intestinal immune cells, anti-microbial defense mechanisms are activated by generating reactive oxygen species (ROS) in intestinal epithelial cells and recruited immune cells. ROS production has to be strictly controlled, and anti-inflammatory responses have to be initiated timely in the resolution phase of inflammation to avoid tissue damage and chronic inflammatory responses. Surprisingly, bacteria-generated vitamin B12/cobalamin and vitamin B9/folic acid have been identified as natural AHR antagonists, stimulating the interest of biochemists. Hints for AHR-cobalamin antagonism are pointing to cobalamin-dependent enzymes leading to alterations of TCA cycle intermediates, and TCDD-mediated loss of serum cobalamin. Although we are still at the beginning to understand mechanisms, it is likely that scientific efforts are on a rewarding path to understand novel AHR functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
7
|
Schmidt JR, Haupt J, Riemschneider S, Kämpf C, Löffler D, Blumert C, Reiche K, Koehl U, Kalkhof S, Lehmann J. Transcriptomic signatures reveal a shift towards an anti-inflammatory gene expression profile but also the induction of type I and type II interferon signaling networks through aryl hydrocarbon receptor activation in murine macrophages. Front Immunol 2023; 14:1156493. [PMID: 37287978 PMCID: PMC10242070 DOI: 10.3389/fimmu.2023.1156493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a broad range of target genes involved in the xenobiotic response, cell cycle control and circadian rhythm. AhR is constitutively expressed in macrophages (Mϕ), acting as key regulator of cytokine production. While proinflammatory cytokines, i.e., IL-1β, IL-6, IL-12, are suppressed through AhR activation, anti-inflammatory IL-10 is induced. However, the underlying mechanisms of those effects and the importance of the specific ligand structure are not yet completely understood. Methods Therefore, we have compared the global gene expression pattern in activated murine bone marrow-derived macrophages (BMMs) subsequently to exposure with either benzo[a]pyrene (BaP) or indole-3-carbinol (I3C), representing high-affinity vs. low-affinity AhR ligands, respectively, by means of mRNA sequencing. AhR dependency of observed effects was proved using BMMs from AhR-knockout (Ahr-/-) mice. Results and discussion In total, more than 1,000 differentially expressed genes (DEGs) could be mapped, covering a plethora of AhR-modulated effects on basal cellular processes, i.e., transcription and translation, but also immune functions, i.e., antigen presentation, cytokine production, and phagocytosis. Among DEGs were genes that are already known to be regulated by AhR, i.e., Irf1, Ido2, and Cd84. However, we identified DEGs not yet described to be AhR-regulated in Mϕ so far, i.e., Slpi, Il12rb1, and Il21r. All six genes likely contribute to shifting the Mϕ phenotype from proinflammatory to anti-inflammatory. The majority of DEGs induced through BaP were not affected through I3C exposure, probably due to higher AhR affinity of BaP in comparison to I3C. Mapping of known aryl hydrocarbon response element (AHRE) sequence motifs in identified DEGs revealed more than 200 genes not possessing any AHRE, and therefore being not eligible for canonical regulation. Bioinformatic approaches modeled a central role of type I and type II interferons in the regulation of those genes. Additionally, RT-qPCR and ELISA confirmed a AhR-dependent expressional induction and AhR-dependent secretion of IFN-γ in response to BaP exposure, suggesting an auto- or paracrine activation pathway of Mϕ.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Janine Haupt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Sina Riemschneider
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christoph Kämpf
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dennis Löffler
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Conny Blumert
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| |
Collapse
|
8
|
Holloman BL, Cannon A, Wilson K, Nagarkatti P, Nagarkatti M. Aryl Hydrocarbon Receptor Activation Ameliorates Acute Respiratory Distress Syndrome through Regulation of Th17 and Th22 Cells in the Lungs. mBio 2023; 14:e0313722. [PMID: 36809070 PMCID: PMC10128024 DOI: 10.1128/mbio.03137-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 02/23/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is triggered by a variety of insults, including bacterial and viral infections, and this leads to high mortality. While the role of the aryl hydrocarbon receptor (AhR) in mucosal immunity is being increasingly recognized, its function during ARDS is unclear. In the current study, we investigated the role of AhR in LPS-induced ARDS. AhR ligand, indole-3-carbinol (I3C), attenuated ARDS which was associated with a decrease in CD4+ RORγt +IL-17a+IL-22+ pathogenic Th17 cells, but not CD4+RORγt +IL-17a+IL-22- homeostatic Th 17 cells, in the lungs. AhR activation also led to a significant increase in CD4+IL-17a-IL-22+ Th22 cells. I3C-mediated Th22 cell expansion was dependent on the AhR expression on RORγt+ cells. AhR activation downregulated miR-29b-2-5p in immune cells from the lungs, which in turn downregulated RORc expression and upregulated IL-22. Collectively, the current study suggests that AhR activation can attenuate ARDS and may serve as a therapeutic modality by which to treat this complex disorder. IMPORTANCE Acute respiratory distress syndrome (ARDS) is a type of respiratory failure that is triggered by a variety of bacterial and viral infections, including the coronavirus SARS-CoV2. ARDS is associated with a hyperimmune response in the lungs that which is challenging to treat. Because of this difficulty, approximately 40% of patients with ARDS die. Thus, it is critical to understand the nature of the immune response that is functional in the lungs during ARDS as well as approaches by which to attenuate it. AhR is a transcription factor that is activated by a variety of endogenous and exogenous environmental chemicals as well as bacterial metabolites. While AhR has been shown to regulate inflammation, its role in ARDS is unclear. In the current study, we provide evidence that AhR activation can attenuate LPS-mediated ARDS through the activation of Th22 cells in the lungs, which are regulated through miR-29b-2-5p. Thus, AhR can be targeted to attenuate ARDS.
Collapse
Affiliation(s)
- Bryan Latrell Holloman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Alkeiver Cannon
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kiesha Wilson
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
9
|
Tanaka M, Okuda T, Itoh K, Ishihara N, Oguro A, Fujii-Kuriyama Y, Nabetani Y, Yamamoto M, Vogel CFA, Ishihara Y. Polycyclic aromatic hydrocarbons in urban particle matter exacerbate movement disorder after ischemic stroke via potentiation of neuroinflammation. Part Fibre Toxicol 2023; 20:6. [PMID: 36797786 PMCID: PMC9933276 DOI: 10.1186/s12989-023-00517-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND A recent epidemiological study showed that air pollution is closely involved in the prognosis of ischemic stroke. We and others have reported that microglial activation in ischemic stroke plays an important role in neuronal damage. In this study, we investigated the effects of urban aerosol exposure on neuroinflammation and the prognosis of ischemic stroke using a mouse photothrombotic model. RESULTS When mice were intranasally exposed to CRM28, urban aerosols collected in Beijing, China, for 7 days, microglial activation was observed in the olfactory bulb and cerebral cortex. Mice exposed to CRM28 showed increased microglial activity and exacerbation of movement disorder after ischemic stroke induction. Administration of core particles stripped of attached chemicals from CRM28 by washing showed less microglial activation and suppression of movement disorder compared with CRM28-treated groups. CRM28 exposure did not affect the prognosis of ischemic stroke in null mice for aryl hydrocarbon receptor, a polycyclic aromatic hydrocarbon (PAH) receptor. Exposure to PM2.5 collected at Yokohama, Japan also exacerbated movement disorder after ischemic stroke. CONCLUSION Particle matter in the air is involved in neuroinflammation and aggravation of the prognosis of ischemic stroke; furthermore, PAHs in the particle matter could be responsible for the prognosis exacerbation.
Collapse
Affiliation(s)
- Miki Tanaka
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2101, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2101, Japan
| | - Nami Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Ami Oguro
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Molecular Epidemiology, Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8510, Japan
| | - Yu Nabetani
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, Minamata, Kumamoto, 867-0008, Japan
| | - Christoph F A Vogel
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, 95616, USA
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA
| | - Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
- Center for Health and the Environment, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Kang S, Lee AG, Im S, Oh SJ, Yoon HJ, Park JH, Pak YK. A Novel Aryl Hydrocarbon Receptor Antagonist HBU651 Ameliorates Peripheral and Hypothalamic Inflammation in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2022; 23:ijms232314871. [PMID: 36499198 PMCID: PMC9736602 DOI: 10.3390/ijms232314871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is a chronic peripheral inflammation condition that is strongly correlated with neurodegenerative diseases and associated with exposure to environmental chemicals. The aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear receptor activated by environmental chemical, such as dioxins, and also is a regulator of inflammation through interacting with nuclear factor (NF)-κB. In this study, we evaluated the anti-obesity and anti-inflammatory activity of HBU651, a novel AhR antagonist. In BV2 microglia cells, HBU651 successfully inhibited lipopolysaccharide (LPS)-mediated nuclear localization of NF-κB and production of NF-κB-dependent proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. It also restored LPS-induced mitochondrial dysfunction. While mice being fed a high-fat diet (HFD) induced peripheral and central inflammation and obesity, HBU651 alleviated HFD-induced obesity, insulin resistance, glucose intolerance, dyslipidemia, and liver enzyme activity, without hepatic and renal damage. HBU651 ameliorated the production of inflammatory cytokines and chemokines, proinflammatory Ly6chigh monocytes, and macrophage infiltration in the blood, liver, and adipose tissue. HBU651 also decreased microglial activation in the arcuate nucleus in the hypothalamus. These findings suggest that HBU651 may be a potential candidate for the treatment of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | | | - Suyeol Im
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Jun Oh
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Ji Yoon
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong Ho Park
- Department of Chemical & Biological Engineering, Hanbat National University, 125 Dongseodaero, Dukmyung-Dong, Yuseong-Gu, Daejeon 34158, Republic of Korea
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Physiology, School of Medicine, Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-961-0908
| |
Collapse
|
11
|
Zhao C, Bao L, Qiu M, Feng L, Chen L, Liu Z, Duan S, Zhao Y, Wu K, Zhang N, Hu X, Fu Y. Dietary Tryptophan-Mediated Aryl Hydrocarbon Receptor Activation by the Gut Microbiota Alleviates Escherichia coli-Induced Endometritis in Mice. Microbiol Spectr 2022; 10:e0081122. [PMID: 35727038 PMCID: PMC9430277 DOI: 10.1128/spectrum.00811-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
Abstract
Intestinal microbiota-mediated aryl hydrocarbon receptor (AhR) activation plays an important role in host-microbiota interactions and disease development. However, whether AhR activation mediates infection-induced inflammation in remote organs is not clear. The purpose of this study is to assess the effects and underlying mechanism of AhR activation and gut microbiota-mediated dietary tryptophan (Trp) metabolism on infection-induced inflammation using an Escherichia coli (E. coli)-induced endometritis model in mice. We found that AhR activation by 6-formylindolo (3,2-b) carbazole (Ficz), which is an AhR agonist derived from the photooxidation of Trp, alleviated E. coli-induced endometritis by repairing barrier function and inhibiting inflammatory responses, while inhibition of AhR by CH223191, which is a synthetic AhR antagonist, aggravated E. coli-induced endometritis. Gut dysbiosis damaged AhR activation and exacerbated E. coli-induced endometritis in mice, which responded to the reduced abundance of AhR ligand producers, such as Lactobacillus spp. Supplementation with dietary Trp ameliorated E. coli-induced endometritis in a microbiota-dependent manner, which was associated with the production of AhR ligands. Administration of AhR ligands, including indole and indole aldehyde, but not indole-3-propionic acid, rescued the protective effect of Trp on E. coli-induced endometritis in dysbiotic mice. Moreover, consumption of Lactobacillus reuteri (L. reuteri) containing AhR ligand-producing capability also alleviated E. coli-induced endometritis in mice in an AhR-dependent manner. Our results demonstrate that microbiota-mediated AhR activation is a key factor in fighting pathogen-caused inflammation, which leads to a potential strategy to regulate the gut microbiota and metabolism by dietary Trp or probiotics for the intervention of infectious diseases and reproductive health. IMPORTANCE Infection-induced endometritis is a common and frequently occurring disease in humans and animals. Accumulating evidence suggests an important role of the gut microbiota in the development of infection-induced inflammation. Whether and how gut microbiota-mediated AhR activation regulates the pathogenesis of pathogen-induced endometritis remains unknown. The current study found that AhR activation ameliorated E. coli-induced endometritis, and inhibition of AhR produced negative results. Gut dysbiosis reduced the abundance of AhR ligand producers including Lactobacillus spp., damaged AhR activation, and exacerbated E. coli-induced endometritis. Supplementation with dietary Trp, AhR ligands, and L. reuteri containing AhR ligand-producing capability alleviated E. coli-induced endometritis in mice. Our results suggest an important role of microbiota-mediated AhR activation in the pathogenesis of endometritis and provide potential strategies for the intervention of infectious diseases and reproductive health by regulating the gut microbiota and metabolism.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Luotong Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
Affiliation(s)
- Cezmi A Akdis
- Affiliations Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland.
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Imran SJ, Vagaska B, Kriska J, Anderova M, Bortolozzi M, Gerosa G, Ferretti P, Vrzal R. Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons. Pharmaceuticals (Basel) 2022; 15:ph15070828. [PMID: 35890127 PMCID: PMC9321538 DOI: 10.3390/ph15070828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Exposure to environmental pollutants and endogenous metabolites that induce aryl hydrocarbon receptor (AhR) expression has been suggested to affect cognitive development and, particularly in boys, also motor function. As current knowledge is based on epidemiological and animal studies, in vitro models are needed to better understand the effects of these compounds in the human nervous system at the molecular level. Here, we investigated expression of AhR pathway components and how they are regulated by AhR ligands in human motor neurons. Motor neurons generated from human induced pluripotent stem cells (hiPSCs) were characterized at the molecular level and by electrophysiology. mRNA levels of AhR target genes, CYP1A1 and CYP1B1 (cytochromes P450 1A1/1B1), and AhR signaling components were monitored in hiPSCs and in differentiated neurons following treatment with AhR ligands, 2,3,7,8,-tetrachlodibenzo-p-dioxin (TCDD), L-kynurenine (L-Kyn), and kynurenic acid (KA), by RT-qPCR. Changes in AhR cellular localization and CYP1A1 activity in neurons treated with AhR ligands were also assessed. The neurons we generated express motor neuron-specific markers and are functional. Transcript levels of CYP1B1, AhR nuclear translocators (ARNT1 and ARNT2) and the AhR repressor (AhRR) change with neuronal differentiation, being significantly higher in neurons than hiPSCs. In contrast, CYP1A1 and AhR transcript levels are slightly lower in neurons than in hiPSCs. The response to TCDD treatment differs in hiPSCs and neurons, with only the latter showing significant CYP1A1 up-regulation. In contrast, TCDD slightly up-regulates CYP1B1 mRNA in hiPSCs, but downregulates it in neurons. Comparison of the effects of different AhR ligands on AhR and some of its target genes in neurons shows that L-Kyn and KA, but not TCDD, regulate AhR expression and differently affect CYP1A1 and CYP1B1 expression. Finally, although TCDD does not significantly affect AhR transcript levels, it induces AhR protein translocation to the nucleus and increases CYP1A1 activity. This is in contrast to L-Kyn and KA, which either do not affect or reduce, respectively, CYP1A1 activity. Expression of components of the AhR signaling pathway are regulated with neuronal differentiation and are differently affected by TCDD, suggesting that pluripotent stem cells might be less sensitive to this toxin than neurons. Crucially, AhR signaling is affected differently by TCDD and other AhR ligands in human motor neurons, suggesting that they can provide a valuable tool for assessing the impact of environmental pollutants.
Collapse
Affiliation(s)
- Saima Jalil Imran
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| | - Barbora Vagaska
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.K.); (M.A.)
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy;
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Patrizia Ferretti
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (B.V.); (P.F.)
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, 77147 Olomouc, Czech Republic
- Correspondence: (S.J.I.); (R.V.); Tel.: +39-498212410 (S.J.I.); +420-58-5634904 (R.V.)
| |
Collapse
|