1
|
El-Sayed SE, Abdelaziz NA, El-Housseiny GS, Aboshanab KM. Nanosponge hydrogel of octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate of Alcaligenes faecalis. Appl Microbiol Biotechnol 2024; 108:100. [PMID: 38217256 PMCID: PMC10786974 DOI: 10.1007/s00253-023-12819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate (ODHP) was extracted in a previous study from the culture broth of soil isolate Alcaligenes faecalis MT332429 and showed a promising antimycotic activity. This study was aimed to formulate ODHP loaded β-cyclodextrins (CD) nanosponge (NS) hydrogel (HG) to control skin fungal ailments since nanosponges augment the retention of tested agents in the skin. Box-Behnken design was used to produce the optimized NS formulation, where entrapment efficiency percent (EE%), polydispersity index (PDI), and particle size (PS) were assigned as dependent parameters, while the independent process parameters were polyvinyl alcohol % (w/v %), polymer-linker ratio, homogenization time, and speed. The carbopol 940 hydrogel was then created by incorporating the nanosponges. The hydrogel fit Higuchi's kinetic release model the best, according to in vitro drug release. Stability and photodegradation studies revealed that the NS-HG remained stable under tested conditions. The formulation also showed higher in vitro antifungal activity against Candida albicans compared to the control fluconazole. In vivo study showed that ODHP-NS-HG increased survival rates, wound contraction, and healing of wound gap and inhibited the inflammation process compared to the other control groups. The histopathological examinations and Masson's trichrome staining showed improved healing and higher records of collagen deposition. Moreover, the permeability of ODHP-NS-HG was higher through rats' skin by 1.5-folds compared to the control isoconazole 1%. Therefore, based on these results, NS-HG formulation is a potential carrier for enhanced and improved topical delivery of ODHP. Our study is a pioneering research on the development of a formulation for ODHP produced naturally from soil bacteria. KEY POINTS: • Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propanoate was successfully formulated as a nanosponge hydrogel and statistically optimized. • The new formula exhibited in vitro good stability, drug release, and higher antifungal activity against C. albicans as compared to the fluconazole. • Ex vivo showed enhanced skin permeability, and in vivo analysis showed high antifungal activity as evidenced by measurement of various biochemical parameters and histopathological examination.
Collapse
Affiliation(s)
- Sayed E El-Sayed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Sixth of October City, Giza, 12451, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Turkoglu B, Mansuroglu B. Investigating the Effects of Chelidonic Acid on Oxidative Stress-Induced Premature Cellular Senescence in Human Skin Fibroblast Cells. Life (Basel) 2024; 14:1070. [PMID: 39337855 PMCID: PMC11433492 DOI: 10.3390/life14091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of chelidonic acid (CA) on hydrogen peroxide (H2O2) induced cellular senescence in human skin fibroblast cells (BJ). Cellular senescence is a critical mechanism that is linked to age-related diseases and chronic conditions. CA, a γ-pyrone compound known for its broad pharmacological activity, was assessed for its potential to mitigate oxidative stress and alter senescence markers. A stress-induced premature senescence (SIPS) model was designed in BJ fibroblast cells using the oxidative stress agent H2O2. After this treatment, cells were treated with CA, and the potential effect of CA on senescence was evaluated using senescence-related β-galactosidase, 4',6-diamino-2-phenylindole (DAPI), acridine-orange staining (AO), comet assay, molecular docking assays, gene expression, and protein analysis. These results demonstrate that CA effectively reduces senescence markers, including senescence-associated β-galactosidase activity, DNA damage, lysosomal activity, and oxidative stress indicators such as malondialdehyde. Molecular docking revealed CA's potential interactions with critical proteins involved in senescence signalling pathways, suggesting mechanisms by which CA may exert its effects. Gene expression and protein analyses corroborated the observed anti-senescent effects, with CA modulating p16, p21, and pRB1 expressions and reducing oxidative stress markers. In conclusion, CA appeared to have senolytic and senomorphic potential in vitro, which could mitigate and reverse SIPS markers in BJ fibroblasts.
Collapse
Affiliation(s)
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
3
|
Denison M, Ullrich A, Herroon MK, Mecca S, Turro C, Podgorski I, Gibson H, Kodanko JJ. Ru(II)-Photoactive Agents for Targeting ER Stress and Immunogenic Cell Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604104. [PMID: 39091867 PMCID: PMC11291038 DOI: 10.1101/2024.07.18.604104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Immunotherapy has emerged as a promising avenue for cancer treatment by bolstering the immune system's ability to recognize and attack cancer cells. Photodynamic therapy shows potential in enhancing antitumor immunity, though the mechanisms behind its success are not fully understood. In this manuscript, we investigate two previously reported green light activated PCT/PDT agents where compound 2 - [Ru(tpy)(Me2bpy)( 3 )] 2+ , (tpy = 2,2':6',2''- terpyridine, Me2bpy = 6,6'-dimethyl-2,2'-bipyridine, 3 = pyridyl-BODIPY-I2,) - shows remarkable photoselectivity in assays containing both 2D cancer cells and 3D cocultures containing BALB/c macrophages and 4T1 murine breast cancer cells. Through flow cytometry and protein analysis, we found complex 2 displays superior evidence of induced endoplasmic reticulum (ER) stress markers and indicators of immunogenic cell death (ICD) compared to its ligand 3 , despite its weaker photoselectivity. Most importantly, these results were supported by in vivo studies where 2 produced anti-tumor immunity against the 4T1 tumor model in BALB/c mice. Complete tumor elimination was achieved in 2/8 mice, and these mice were both protected against a subsequent contralateral rechallenge and showed increased ex vivo peripheral tumor antigen-specific recall, suggesting memory T cells are induced by 2 . Signatures of M1 macrophage polarization were also evident in tumor tissue from the remaining 6/8 mice treated with 2 compared to untreated tumors. These findings demonstrate Ru(II) complexation plays a critical role in ER targeting which triggers ICD, highlighting the potential of Ru(II) agents as future in situ tumor vaccines.
Collapse
|
4
|
Hossein Nowroozzadeh M, Yousefi M, Abuali M, Sanie-Jahromi F. Effect of adalimumab as an anti-inflammatory agent on gene expression of retinal pigment epithelial cells. Biomed Pharmacother 2024; 174:116568. [PMID: 38599062 DOI: 10.1016/j.biopha.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Adalimumab (ADA) is an anti-inflammatory antibody that has FDA approval as a systemic medication for treating noninfectious uveitis. It is also provisionally being investigated as an intravitreal injection for various retinal conditions. This study aimed to assess the effect of ADA on apoptotic, inflammatory, and fibrogenesis gene expression at mRNA and protein levels in retinal pigment epithelial (RPE) cells. RPEs were treated with serial concentrations of ADA (0.5x, x, 2x, and 4x; [x = 250 µg/mL]) for 24 hours. MTT assay was done and the mRNA and protein expressions were quantified using real-time PCR and ELISA assay, respectively. The mRNA levels of IL-1b and IL-6 were significantly increased in ADA-treated RPEs at 0.5x and x concentrations. However, the increase in cytokine secretion was observed only in IL-1b at x concentration. TGF-β was significantly upregulated in the 0.5x and 4x doses of ADA both at mRNA and protein levels. MTT assay, along with an unchanged BCL-2/BAX ratio confirmed the safety of ADA on RPEs at all studied concentrations. In conclusion, despite its safety, the 2x concentration of ADA was the only dose that did not ignite the expression of any of the studied inflammatory and fibrogenesis genes. This dosage, which is roughly equal to 2 mg intravitreal dose in a clinical setting, might be referred to as a reference starting point for future in-vivo studies in ocular conditions.
Collapse
Affiliation(s)
- M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| | - Mojtaba Yousefi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| | - Mostafa Abuali
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran.
| |
Collapse
|
5
|
Mikheeva AM, Bogomolov MA, Gasca VA, Sementsov MV, Spirin PV, Prassolov VS, Lebedev TD. Improving the power of drug toxicity measurements by quantitative nuclei imaging. Cell Death Discov 2024; 10:181. [PMID: 38637526 PMCID: PMC11026393 DOI: 10.1038/s41420-024-01950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Imaging-based anticancer drug screens are becoming more prevalent due to development of automated fluorescent microscopes and imaging stations, as well as rapid advancements in image processing software. Automated cell imaging provides many benefits such as their ability to provide high-content data, modularity, dynamics recording and the fact that imaging is the most direct way to access cell viability and cell proliferation. However, currently most publicly available large-scale anticancer drugs screens, such as GDSC, CTRP and NCI-60, provide cell viability data measured by assays based on colorimetric or luminometric measurements of NADH or ATP levels. Although such datasets provide valuable data, it is unclear how well drug toxicity measurements can be integrated with imaging data. Here we explored the relations between drug toxicity data obtained by XTT assay, two quantitative nuclei imaging methods and trypan blue dye exclusion assay using a set of four cancer cell lines with different morphologies and 30 drugs with different mechanisms of action. We show that imaging-based approaches provide high accuracy and the differences between results obtained by different methods highly depend on drug mechanism of action. Selecting AUC metrics over IC50 or comparing data where significantly drugs reduced cell numbers noticeably improves consistency between methods. Using automated cell segmentation protocols we analyzed mitochondria activity in more than 11 thousand drug-treated cells and showed that XTT assay produces unreliable data for CDK4/6, Aurora A, VEGFR and PARP inhibitors due induced cell size growth and increase in individual mitochondria activity. We also explored several benefits of image-based analysis such as ability to monitor cell number dynamics, dissect changes in total and individual mitochondria activity from cell proliferation, and ability to identify chromatin remodeling drugs. Finally, we provide a web tool that allows comparing results obtained by different methods.
Collapse
Affiliation(s)
- Alesya M Mikheeva
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Mikhail A Bogomolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentina A Gasca
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Mikhail V Sementsov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Pavel V Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
| | - Vladimir S Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia
| | - Timofey D Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova str., Moscow, 119991, Russia.
| |
Collapse
|
6
|
Somers T, Siddiqi S, Maas RGC, Sluijter JPG, Buikema JW, van den Broek PHH, Meuwissen TJ, Morshuis WJ, Russel FGM, Schirris TJJ. Statins affect human iPSC-derived cardiomyocytes by interfering with mitochondrial function and intracellular acidification. Basic Res Cardiol 2024; 119:309-327. [PMID: 38305903 DOI: 10.1007/s00395-023-01025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Statins are effective drugs in reducing cardiovascular morbidity and mortality by inhibiting cholesterol synthesis. These effects are primarily beneficial for the patient's vascular system. A significant number of statin users suffer from muscle complaints probably due to mitochondrial dysfunction, a mechanism that has recently been elucidated. This has raised our interest in exploring the effects of statins on cardiac muscle cells in an era where the elderly and patients with poorer functioning hearts and less metabolic spare capacity start dominating our patient population. Here, we investigated the effects of statins on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-derived CMs). hiPSC-derived CMs were exposed to simvastatin, atorvastatin, rosuvastatin, and cerivastatin at increasing concentrations. Metabolic assays and fluorescent microscopy were employed to evaluate cellular viability, metabolic capacity, respiration, intracellular acidity, and mitochondrial membrane potential and morphology. Over a concentration range of 0.3-100 µM, simvastatin lactone and atorvastatin acid showed a significant reduction in cellular viability by 42-64%. Simvastatin lactone was the most potent inhibitor of basal and maximal respiration by 56% and 73%, respectively, whereas simvastatin acid and cerivastatin acid only reduced maximal respiration by 50% and 42%, respectively. Simvastatin acid and lactone and atorvastatin acid significantly decreased mitochondrial membrane potential by 20%, 6% and 3%, respectively. The more hydrophilic atorvastatin acid did not seem to affect cardiomyocyte metabolism. This calls for further research on the translatability to the clinical setting, in which a more conscientious approach to statin prescribing might be considered, especially regarding the current shift in population toward older patients with poor cardiac function.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Jan W Buikema
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Department of Cardiology, Amsterdam Heart Center, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HZ, Amsterdam, The Netherlands
| | - Petra H H van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Tanne J Meuwissen
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Wim J Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.
| | - Tom J J Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|