1
|
Hutton SJ, Siddiqui S, Pedersen EI, Markgraf CY, Segarra A, Hladik ML, Connon RE, Brander SM. Multigenerational, Indirect Exposure to Pyrethroids Demonstrates Potential Compensatory Response and Reduced Toxicity at Higher Salinity in Estuarine Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2224-2235. [PMID: 38267018 PMCID: PMC10851936 DOI: 10.1021/acs.est.3c06234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Estuarine environments are critical to fish species and serve as nurseries for developing embryos and larvae. They also undergo daily fluctuations in salinity and act as filters for pollutants. Additionally, global climate change (GCC) is altering salinity regimes within estuarine systems through changes in precipitation and sea level rise. GCC is also likely to lead to an increased use of insecticides to prevent pests from damaging agricultural crops as their habitats and mating seasons change from increased temperatures. This underscores the importance of understanding how insecticide toxicity to fish changes under different salinity conditions. In this study, larval Inland Silversides (Menidia beryllina) were exposed to bifenthrin (1.1 ng/L), cyfluthrin (0.9 ng/L), or cyhalothrin (0.7 ng/L) at either 6 or 10 practical salinity units (PSU) for 96 h during hatching, with a subset assessed for end points relevant to neurotoxicity and endocrine disruption by testing behavior, gene expression of a select suite of genes, reproduction, and growth. At both salinities, directly exposed F0 larvae were hypoactive relative to the F0 controls; however, the indirectly exposed F1 larvae were hyperactive relative to the F1 control. This could be evidence of a compensatory response to environmentally relevant concentrations of pyrethroids in fish. Effects on development, gene expression, and growth were also observed. Overall, exposure to pyrethroids at 10 PSU resulted in fewer behavioral and endocrine disruptive effects relative to those observed in organisms at 6 PSU.
Collapse
Affiliation(s)
- Sara J. Hutton
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Samreen Siddiqui
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| | - Emily I. Pedersen
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| | - Christopher Y. Markgraf
- Department
of Biochemistry and Biophysics, Oregon State
University, Corvallis, Oregon 97331, United States
| | - Amelie Segarra
- Department
of Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, United States
| | - Michelle L. Hladik
- U.S.
Geological Survey, California Water Science
Center, Sacramento, California 95819, United States
| | - Richard E. Connon
- Department
of Anatomy, Physiology, and Cell Biology, University of California, Davis, California 95616, United States
| | - Susanne M. Brander
- Department
of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon
Marine Experiment Station, Oregon State
University, Newport, Oregon 97365, United States
| |
Collapse
|
2
|
Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A, Grafström R, Harrill J, Hartung T, Herzler M, Kass GEN, Kleinstreuer N, Leist M, Luijten M, Marx-Stoelting P, Poetz O, van Ravenzwaay B, Roggeband R, Rogiers V, Roth A, Sanders P, Thomas RS, Marie Vinggaard A, Vinken M, van de Water B, Luch A, Tralau T. New approach methodologies in human regulatory toxicology - Not if, but how and when! ENVIRONMENT INTERNATIONAL 2023; 178:108082. [PMID: 37422975 PMCID: PMC10858683 DOI: 10.1016/j.envint.2023.108082] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).
Collapse
Affiliation(s)
| | - Andrea Miccoli
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany; National Research Council, Ancona, Italy
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | | | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian Desaintes
- European Commission (EC), Directorate General for Research and Innovation (RTD), Brussels, Belgium
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development (OECD), Environment Directorate, Paris, France
| | | | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health Baltimore MD USA, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Nicole Kleinstreuer
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), Durham, USA
| | - Marcel Leist
- CAAT‑Europe and Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Oliver Poetz
- NMI Natural and Medical Science Institute at the University of Tuebingen, Reutlingen, Germany; SIGNATOPE GmbH, Reutlingen, Germany
| | | | - Rob Roggeband
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Procter and Gamble Services Company NV/SA, Strombeek-Bever, Belgium
| | - Vera Rogiers
- Scientific Committee on Consumer Safety (SCCS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pascal Sanders
- Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France France
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | | | | | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
3
|
Marx-Stoelting P, Rivière G, Luijten M, Aiello-Holden K, Bandow N, Baken K, Cañas A, Castano A, Denys S, Fillol C, Herzler M, Iavicoli I, Karakitsios S, Klanova J, Kolossa-Gehring M, Koutsodimou A, Vicente JL, Lynch I, Namorado S, Norager S, Pittman A, Rotter S, Sarigiannis D, Silva MJ, Theunis J, Tralau T, Uhl M, van Klaveren J, Wendt-Rasch L, Westerholm E, Rousselle C, Sanders P. A walk in the PARC: developing and implementing 21st century chemical risk assessment in Europe. Arch Toxicol 2023; 97:893-908. [PMID: 36645448 PMCID: PMC9968685 DOI: 10.1007/s00204-022-03435-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/17/2023]
Abstract
Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety.
Collapse
Affiliation(s)
- P. Marx-Stoelting
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - G. Rivière
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| | - M. Luijten
- National Institute for Health and Environment (RIVM), Bilthoven, The Netherlands
| | - K. Aiello-Holden
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - N. Bandow
- grid.425100.20000 0004 0554 9748German Environment Agency (UBA), Wörlitzer Platz 1, 06844 Dessau, Germany
| | - K. Baken
- grid.6717.70000000120341548VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium
| | - A. Cañas
- grid.413448.e0000 0000 9314 1427National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A. Castano
- grid.413448.e0000 0000 9314 1427National Centre for Environmental Health, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - S. Denys
- grid.493975.50000 0004 5948 8741Santé Publique France (SpFrance), 12, Rue du Val D’Osne, 94415 St. Maurice, France
| | - C. Fillol
- grid.493975.50000 0004 5948 8741Santé Publique France (SpFrance), 12, Rue du Val D’Osne, 94415 St. Maurice, France
| | - M. Herzler
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - I. Iavicoli
- grid.4691.a0000 0001 0790 385XDepartment of Public Health, University of Naples Federico II (UNINA), Naples, Italy
| | - S. Karakitsios
- grid.4793.90000000109457005Aristoteles University Thessaloniki (AUTH), Thessaloniki, Greece
| | - J. Klanova
- Masaryk Uinversity, Recetox, Kotlarska 2, 61137 Brno, Czechia
| | - M. Kolossa-Gehring
- grid.425100.20000 0004 0554 9748German Environment Agency (UBA), Wörlitzer Platz 1, 06844 Dessau, Germany
| | - A. Koutsodimou
- General Chemical State Laboratory of Greece, Athens, Greece
| | - J. Lobo Vicente
- grid.453985.60000 0004 0619 3405European Environment Agency, Kongens Nytorv 6, 1050 Copenhagen K, Denmark
| | - I. Lynch
- grid.6572.60000 0004 1936 7486School of Geography, Earth and Environmental Sciences, University of Birmingham (UoB), Edgbaston, Birmingham, B15 2TT UK
| | - S. Namorado
- grid.422270.10000 0001 2287 695XNational Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - S. Norager
- grid.270680.bEuropean Commission, DG Research and Innovation, Orban 09/199, 1049 Brussels, Belgium
| | - A. Pittman
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| | - S. Rotter
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - D. Sarigiannis
- grid.4793.90000000109457005Aristoteles University Thessaloniki (AUTH), Thessaloniki, Greece
| | - M. J. Silva
- grid.422270.10000 0001 2287 695XNational Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - J. Theunis
- grid.6717.70000000120341548VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium
| | - T. Tralau
- grid.417830.90000 0000 8852 3623German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - M. Uhl
- Austrian Federal Environments Agency, Vienna, Austria
| | - J. van Klaveren
- National Institute for Health and Environment (RIVM), Bilthoven, The Netherlands
| | - L. Wendt-Rasch
- grid.437386.d0000 0001 1523 2072Swedish Chemicals Agency (KemI), Vasagatan 12D, 172 67 Sundbyberg, Sweden
| | - E. Westerholm
- grid.437386.d0000 0001 1523 2072Swedish Chemicals Agency (KemI), Vasagatan 12D, 172 67 Sundbyberg, Sweden
| | - C. Rousselle
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| | - P. Sanders
- grid.15540.350000 0001 0584 7022French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France
| |
Collapse
|