1
|
Phelps DW, Palekar AI, Conley HE, Ferrero G, Driggers JH, Linder KE, Kullman SW, Reif DM, Sheats MK, DeWitt JC, Yoder JA. Legacy and emerging per- and polyfluoroalkyl substances suppress the neutrophil respiratory burst. J Immunotoxicol 2023; 20:2176953. [PMID: 36788734 PMCID: PMC10361455 DOI: 10.1080/1547691x.2023.2176953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are used in a multitude of processes and products, including nonstick coatings, food wrappers, and fire-fighting foams. These chemicals are environmentally-persistent, ubiquitous, and can be detected in the serum of 98% of Americans. Despite evidence that PFASs alter adaptive immunity, few studies have investigated their effects on innate immunity. The report here presents results of studies that investigated the impact of nine environmentally-relevant PFASs [e.g. perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid potassium salt (PFOS-K), perfluorononanoic acid (PFNA), perfluorohexanoic acid (PFHxA), perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), 7H-perfluoro-4-methyl-3,6-dioxa-octane sulfonic acid (Nafion byproduct 2), and perfluoromethoxyacetic acid sodium salt (PFMOAA-Na)] on one component of the innate immune response, the neutrophil respiratory burst. The respiratory burst is a key innate immune process by which microbicidal reactive oxygen species (ROS) are rapidly induced by neutrophils in response to pathogens; defects in the respiratory burst can increase susceptibility to infection. The study here utilized larval zebrafish, a human neutrophil-like cell line, and primary human neutrophils to ascertain whether PFAS exposure inhibits ROS production in the respiratory burst. It was observed that exposure to PFHxA and GenX suppresses the respiratory burst in zebrafish larvae and a human neutrophil-like cell line. GenX also suppressed the respiratory burst in primary human neutrophils. This report is the first to demonstrate that these PFASs suppress neutrophil function and support the utility of employing zebrafish larvae and a human cell line as screening tools to identify chemicals that may suppress human immune function.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Anika I. Palekar
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Haleigh E. Conley
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jacob H. Driggers
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Keith E. Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Seth W. Kullman
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
| | - David M. Reif
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
| | - M. Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
Flood J, Byrne D, Bauquier J, Agne GF, Wise JC, Medina‐Torres CE, Wood K, Sullivan O, Stewart AJ. Right dorsal colitis in horses: A multicenter retrospective study of 35 cases. J Vet Intern Med 2023; 37:2535-2543. [PMID: 37800408 PMCID: PMC10658563 DOI: 10.1111/jvim.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Right dorsal colitis (RDC) is a nonsteroidal anti-inflammatory drug (NSAID) induced, protein losing enteropathy in horses associated with a high case fatality rate. OBJECTIVES To describe signalment, NSAID usage, clinical presentations, clinical pathology, ultrasonographic findings, treatments, outcomes, and factors associated with survival in horses diagnosed with RDC. ANIMALS Thirty-five horses from 7 Australian equine hospitals diagnosed with RDC. METHODS Retrospective case series. Clinical records of cases were accepted if definitively or presumptively diagnosed by an internist with RDC and had ≥3 of: hypoproteinemia or hypoalbuminemia; diarrhea with negative test results for infectious diseases; colic for which other diseases were excluded or right dorsal colon thickening on ultrasound. Descriptive data analysis was performed for categorical and continuous variables. Univariate binominal logistic regressions were used to assess factors associated with survival. RESULTS An overdose of NSAIDs occurred in 84% (21/25) cases where dose was known. Common clinical presentations included diarrhea (69%; 22/32), colic (61%; 20/33), and tachycardia (53%, 17/32). Common clinicopathological findings included hypoalbuminemia (83%; 26/31), hypocalcaemia (79%, 23/29), and hyperlactatemia (77%, 14/18). The right dorsal colon wall appeared subjectively thickened in 77% (24/31) cases using ultrasonography. Case fatality rate was 43% (15/35). Odds of survival significantly decreased with increasing heart rate (odds 0.84, 95% CI = 0.71-0.92, P = .01), packed cell volume (odds 0.91, 95% CI 0.82-0.98, P = .05) and abnormal appearance of mucous membranes (odds 0.05, 95% CI 0.005-0.28, P = .001) on hospital presentation. CONCLUSIONS AND CLINICAL IMPORTANCE An overdose of NSAIDs is common in horses diagnosed with RDC. Serum albumin concentrations should be monitored in horses receiving a prolonged course of NSAIDs. Overall prognosis for RDC remains fair.
Collapse
Affiliation(s)
- Jordan Flood
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
- Present address:
Scone Equine HospitalSconeNew South WalesAustralia
| | - David Byrne
- School of Veterinary MedicineMurdoch UniversityPerthWestern AustraliaAustralia
| | - Jennifer Bauquier
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| | - Gustavo Ferlini Agne
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jessica C. Wise
- School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | - Carlos E. Medina‐Torres
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
- Present address:
Pferdeklinik SaarLorLux GmbHUeberherrnGermany
| | - Kelly Wood
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
- Present address:
NSW Department of Primary IndustriesGoulburnNew South WalesAustralia
| | - Olivia Sullivan
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Present address:
Yarra Ranges Animal HospitalLilydaleVictoriaAustralia
| | - Allison J. Stewart
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
| |
Collapse
|
3
|
Ma Y, Guo R, Zheng Z, Min P, Ji R, Chen J, Liu Y. Developmental toxicity in Daphnia magna induced by environmentally relevant concentrations of carbon black: From the perspective of metabolomics and symbiotic bacteria composition. CHEMOSPHERE 2023; 340:139889. [PMID: 37633611 DOI: 10.1016/j.chemosphere.2023.139889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The level of carbon black (CB) pollution in the environment is rapidly increasing, owing to the increase in natural and industrial emissions. The water environment has become an important sink for CB. However, studies on CB mainly focused on its impact on air pollution and phytoremediation applications, and the toxicity mechanism of CB in aquatic organisms is relatively limited. Thus, Daphnia magna was used as a model organism to explore the developmental toxicity of environmentally relevant concentrations of CB under a full life-cycle exposure. The toxicity mechanism of CB in aquatic organisms was investigated based on metabolomic and symbiotic microbial analyses. It was found that compared with the control group, the body length of exposed D. magna decreased, while the mortality and intestinal inflammation increased with increasing concentration of CB. The normal reproductive regularity of D. magna was disturbed, and the deformity and body length of the offspring increased and decreased, respectively, after CB exposure. Metabolomic analysis showed that the urea cycle metabolic pathway of exposed D. magna was increased significantly, suggesting a perturbation of N metabolism. In addition, two eicosanoids were increased, suggesting possible inflammation in D. magna. The levels of seven phospholipid metabolites decreased that might be responsible for offspring malformations. Microbiological analysis showed that the composition of the symbiotic microbial community of D. magna was disturbed, including microorganisms involved in carbon cycling, nitrogen cycling, and biodegradation of pollutants, as well as pathogenic microorganisms. Overall, this study found that the inflammatory related metabolites and symbiotic bacterial, as well as reproductive related metabolites, were disrupted after D. magna exposed to different concentrations of CB, which revealed a possible developmental toxicity mechanism of CB in D. magna. These findings provide a scientific basis for analyzing the risks of CB in aquatic environments.
Collapse
Affiliation(s)
- Yunfeng Ma
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Ruixin Guo
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Zixuan Zheng
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Peng Min
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jianqiu Chen
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Yanhua Liu
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
4
|
Höglund N, Nieminen P, Mustonen AM, Käkelä R, Tollis S, Koho N, Holopainen M, Ruhanen H, Mykkänen A. Fatty acid fingerprints in bronchoalveolar lavage fluid and its extracellular vesicles reflect equine asthma severity. Sci Rep 2023; 13:9821. [PMID: 37330591 PMCID: PMC10276833 DOI: 10.1038/s41598-023-36697-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 06/19/2023] Open
Abstract
Equine asthma (EA) is an inflammatory disease of the lower airways driven by mediators released from cells. Extracellular vesicles (EVs) are vehicles for lipid mediators, which possess either pro-inflammatory or dual anti-inflammatory and pro-resolving functions. In this study, we investigated how the respiratory fatty acid (FA) profile reflects airway inflammatory status. The FA composition of bronchoalveolar lavage fluid (BALF), BALF supernatant, and bronchoalveolar EVs of healthy horses (n = 15) and horses with mild/moderate EA (n = 10) or severe EA (SEA, n = 5) was determined with gas chromatography and mass spectrometry. The FA profiles distinguished samples with different diagnoses in all sample types, yet they were insufficient to predict the health status of uncategorized samples. Different individual FAs were responsible for the discrimination of the diagnoses in different sample types. Particularly, in the EVs of SEA horses the proportions of palmitic acid (16:0) decreased and those of eicosapentaenoic acid (20:5n-3) increased, and all sample types of asthmatic horses had elevated dihomo-γ-linolenic acid (20:3n-6) proportions. The results suggest simultaneous pro-inflammatory and resolving actions of FAs and a potential role for EVs as vehicles for lipid mediators in asthma pathogenesis. EV lipid manifestations of EA can offer translational targets to study asthma pathophysiology and treatment options.
Collapse
Affiliation(s)
- Nina Höglund
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Petteri Nieminen
- School of Medicine, Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Anne-Mari Mustonen
- School of Medicine, Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 80101, Joensuu, Finland
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, and Biocenter Finland, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Sylvain Tollis
- School of Medicine, Faculty of Health Sciences, Institute of Biomedicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Ninna Koho
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Minna Holopainen
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, and Biocenter Finland, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, and Biocenter Finland, 00014, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
5
|
Vokes J, Lovett A, Sykes B. Equine Gastric Ulcer Syndrome: An Update on Current Knowledge. Animals (Basel) 2023; 13:1261. [PMID: 37048517 PMCID: PMC10093336 DOI: 10.3390/ani13071261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Equine Gastric Ulcer Syndrome (EGUS) is a term that has been used since 1999, initially being used to describe all gastric mucosal disease in horses. Since this time, the identification of two distinct main disease entities of the equine gastric mucosa have been described under the umbrella of EGUS; these are Equine Squamous Gastric Disease (ESGD) and Equine Glandular Gastric Disease (EGGD). In 2015 the European College of Equine Internal Medicine (ECEIM) released a consensus statement defining these disease entities. This document highlighted the lack of evidence surrounding EGGD compared to ESGD, and identified knowledge gaps for further research to be directed. Subsequently, many studies on EGGD have been published, especially on pathophysiology, diagnosis, and treatment. This article updates current knowledge on both ESGD and EGGD as understanding has evolved since the last large-scale review.
Collapse
Affiliation(s)
- Jessica Vokes
- Equine Veterinary Clinic, School of Veterinary Sciences, Massey University, Palmerston North 4474, New Zealand
| | | | | |
Collapse
|
6
|
Azırak S. Prevention of nephrotoxicity induced by amikacin: The role of misoprostol, A prostaglandin E1 analogue. Prostaglandins Other Lipid Mediat 2023; 164:106682. [PMID: 36349661 DOI: 10.1016/j.prostaglandins.2022.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Amikacin (AK) is an aminoglycoside that is widely used to treat life-threatening Gram-negative infections, especially in intensive care units. Despite its wide clinical indications, AK causes serious side effects such as kidney toxicity. AK was found to lead to tissue damage primarily through apoptosis and oxidative stress. Therefore, it was investigated whether misoprostol (MP), which has antioxidant and antiapoptotic properties, had a beneficial effect on kidney damage caused by AK. It was observed that kidney injury molecule-1 (KIM-1) mRNA, blood urea nitrogen (BUN), creatinine (Cr), NADPH oxidase-4 (NOX-4) and Caspase-3 (CAS-3) levels increased in the AK-treated group in comparison with the control group, while uric acid, albumin, and total protein levels were decreased. In rats that were treated with AK+MP, the levels of KIM-1 mRNA, BUN, Cr, NOX-4 and CAS-3 were significantly decreased in comparison with the AK group, while uric acid, albumin and total protein levels increased. According to the obtained results, MP was found to be quite effective in the protection of kidneys from the toxic effects of AK.
Collapse
Affiliation(s)
- Sebile Azırak
- Vocational School of Health Services, University of Adıyaman, Adıyaman, Turkey.
| |
Collapse
|
7
|
Pfeifle RL, Ericsson AC, McCoy AM, Boothe DM, Wooldridge AA, Groover ES, Sierra-Rodriguez T, Lascola KM. Multidose misoprostol pharmacokinetics and its effect on the fecal microbiome in healthy, adult horses. Am J Vet Res 2023. [DOI: 10.2460/ajvr.22.09.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
OBJECTIVE
To compare the pharmacokinetics between repeated doses and to characterize changes in the fecal microbiome after oral and rectal multidose misoprostol administration.
ANIMALS
6 healthy university-owned geldings.
PROCEDURES
In a randomized, crossover study, misoprostol (5 μg/kg) was administered orally or rectally every 8 hours for 10 doses, or not administered (control), with a 21-day washout between treatments. Concentration-versus-time data for dose 1 and dose 10 were subject to noncompartmental analysis. For microbiota analysis using 16S rRNA amplicon sequencing, manure was collected 7 days before study onset, immediately before dose 1, and 6 hours, 7 days, and 14 days after dose 10, with time-matched points in controls.
RESULTS
Repeated dosing-related differences in pharmacokinetic parameters were not detected for either administration route. The area under the concentration-versus-time curve was greater (P < .04) after oral versus rectal administration. The relative bioavailability of rectal administration was 4 to 86% of that of oral administration. Microbial composition, richness, and β-diversity differed among subjects (P < .001 all) while only composition differed between treatments (P ≤ .01). Richness was decreased 6 hours after dose 10 and at the control-matched time point (P = .0109) in all subjects. No other differences for time points, treatments, or their interactions were observed.
CLINICAL RELEVANCE
Differences in systemic exposure were associated with the route of administration but were not detected after repeated administration of misoprostol. Differences in microbiota parameters were primarily associated with interindividual variation and management rather than misoprostol administration.
Collapse
Affiliation(s)
- Rachel L. Pfeifle
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri Colombia, MO
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana, IL
| | - Dawn M. Boothe
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Anne A. Wooldridge
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Erin S. Groover
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Tamara Sierra-Rodriguez
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Kara M. Lascola
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
8
|
Bayless RL, Sheats MK, Jones SL. Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil Apoptosis. Front Vet Sci 2022; 9:900453. [PMID: 35782542 PMCID: PMC9247543 DOI: 10.3389/fvets.2022.900453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils play a major role in many equine conditions, including equine asthma, laminitis, and intestinal ischemia and reperfusion injury, and therefore represent an attractive target for innovative therapeutic approaches. Novel strategies for reducing neutrophilic inflammation include modulation of neutrophil functions and lifespan. Withaferin A (WFA) is a phytochemical with well-established in vitro and in vivo anti-inflammatory properties, but its direct effects on neutrophils are largely unknown. We hypothesized that WFA would inhibit adhesion, migration, and respiratory burst by equine neutrophils and promote timely apoptosis of primed equine neutrophils. Consistent with this hypothesis, our data show that WFA causes a significant, concentration-dependent inhibition of equine neutrophil adhesion, migration, and respiratory burst in response to diverse stimuli. Further, WFA treatment increased apoptosis of equine neutrophils exposed to GM-CSF for 24 h. This pro-apoptotic effect of WFA was not observed in unprimed neutrophils, nor at the 2-h time point relevant to our functional neutrophil experiments. Our data demonstrate that WFA may reduce neutrophil-mediated inflammation through multiple mechanisms, including suppression of inflammatory responses and promotion of apoptosis. Additional research is needed to elucidate the molecular mechanisms for these effects and evaluate the potential clinical use of WFA in veterinary and human patients.
Collapse
Affiliation(s)
- Rosemary L Bayless
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Samuel L Jones
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
9
|
Intra-nasal administration of sperm head turns neutrophil into reparative mode after PGE1- and/or Ang II receptor-mediated phagocytosis followed by expression of sperm head's coding RNA. Int Immunopharmacol 2021; 98:107696. [PMID: 34147914 DOI: 10.1016/j.intimp.2021.107696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Having played homeostatic role, the immune system maintains the integrity of the body. Such a characteristic makes immune system as an attractive candidate for resolution of inflammatory disease followed by tissue repair. As first responder cells, neutrophils direct immune response playing key role in tissue remodeling. Previous studies revealed that sperm attracts neutrophils and promotes uterine remodeling suitable for fetus growth. Accordingly, sperm and more efficiently sperm head had remodeling effects on damaged brain in Alzheimer's disease (AD) model. To further reveal the mechanism, two kinds of in vivo study, including kinetic study and inhibition of neutrophil phagocytosis on AD model, as well as in vitro study using co-culture of neutrophil and sperm head were performed. Kinetic study revealed that sperm head recruited neutrophil to nasal mucosa similar to that of uterus and sperm head-phagocytizing neutrophils acquired new activation status comparing to control. In vitro study also demonstrated that sperm head-phagocytizing neutrophils acquire new activation status and express coding RNAs of sperm head. Accordingly, inhibition of neutrophil phagocytic activity abrogated therapeutic effects of sperm head. Neutrophils activation status is important in the fate of inflammatory process. Modulation but not suppression of neutrophils helps remodeling and repair of damaged tissue. Sperm head is an intelligent cell and not just a simple particle to remove by phagocytosis but instead can program neutrophils and consequently immune response into reparative mode after phagocytosis.
Collapse
|
10
|
Studies of molecular pathways associated with blood neutrophil corticosteroid insensitivity in equine asthma. Vet Immunol Immunopathol 2021; 237:110265. [PMID: 33989854 DOI: 10.1016/j.vetimm.2021.110265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Severe equine asthma is characterized by airway hyperresponsiveness, neutrophilic inflammation and structural alterations of the lower airways. In asthmatic horses with neutrophilic inflammation, there is insensitivity to corticosteroids characterized by the persistence of neutrophils within the airways with therapy. We hypothesized that hypoxia or oxidative stress in the microenvironment of the lung contributes to this insensitivity of neutrophils to corticosteroids in asthmatic horses. Blood neutrophils isolated from horses with severe asthma (N = 8) and from healthy controls (N = 8) were incubated under different cell culture conditions simulating hypoxia and oxidative stress and, in the presence, or absence of dexamethasone. The pro-inflammatory gene and protein expression of neutrophils were studied. In both groups, pyocyanin-induced oxidative stress increased the mRNA expression of IL-8, IL-1β, and TNF-α. While IL-1β and TNF-α were downregulated by dexamethasone under these conditions, IL-8 was not. Simulated hypoxic conditions did not enhance pro-inflammatory gene expression in neutrophils from either group of horses. In conclusion, oxidative stress but not hypoxia may contribute to corticosteroid insensitivity via a selective gene regulation pathway. Equine neutrophil responses were similar in both heathy and asthmatic horses, indicating that it is not specific to asthmatic inflammation.
Collapse
|
11
|
Muko R, Matsuda H, Oikawa MA, Shin T, Matsuda K, Sato H, Sunouchi T, Tanaka A. Histidine-Rich Glycoprotein Functions as a Dual Regulator of Neutrophil Activity in Horses. J Equine Vet Sci 2021; 102:103620. [PMID: 34119191 DOI: 10.1016/j.jevs.2021.103620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Histidine-rich glycoprotein (HRG) is an abundant plasma protein that has been identified in most mammals. We first identified whole genome sequence of equine HRG (eHRG) and succeeded to purify eHRG from plasma of horses. Since HRG interacts with various ligands, this protein is thought to be involved in immune response, coagulation, and angiogenesis. Systemic inflammatory response syndrome (SIRS) is characterized as a non-specific, clinical, pro-inflammatory immune response that damage organs and tissues in the host. Recent reports revealed that blood HRG levels in human patients with SIRS are approximately 50% lower than those in healthy controls, indicating the use of HRG as a biomarker or treatment for SIRS. SIRS is also a serious issue in equine medicine. In this study, we investigated various effects of eHRG on neutrophil functions, including adhesion, migration, phagocytosis, reactive oxygen species (ROS) production, and lysosome maturation using neutrophils isolated from horses. Microscopic observation showed that the addition of eHRG to the culture diminished adhesion of neutrophils stimulated with LPS. Using the Boyden chamber technique, we showed that eHRG reduced neutrophil chemotaxis induced by recombinant human IL-8. Luminol-dependent chemiluminescence assay demonstrated that eHRG restrained the peak of LPS-promoted ROS production from neutrophils. In contrast, eHRG promoted phagocytic activity evaluated with uptake of fluorescent dye conjugated particles, as well as lysosomal maturation assessed using fluorescent staining for lysosomes of equine neutrophils. These results indicated that eHRG acts as a dual regulator of neutrophils in horses.
Collapse
Affiliation(s)
- Ryo Muko
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Division of Animal Life Science, Institute of Agriculture, Tokyo, Japan
| | - Hiroshi Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masa-Aki Oikawa
- Diagnostic and Research Laboratory, Equine Veterinary Medical Center, Education City, Doha, Qatar
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, South Korea
| | - Kenshiro Matsuda
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroaki Sato
- Ritto Training Center, Japan Racing Association, Shiga, Japan
| | - Tomoya Sunouchi
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Akane Tanaka
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Division of Animal Life Science, Institute of Agriculture, Tokyo, Japan; Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| |
Collapse
|
12
|
Investigation of innate immune function in adult and geriatric horses. Vet Immunol Immunopathol 2021; 235:110207. [PMID: 33735821 DOI: 10.1016/j.vetimm.2021.110207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 11/23/2022]
Abstract
In order to better understand the influence of age on innate immune function in horses, blood was collected from twelve adult horses (aged 10-16 years; mean: 13 years) and ten geriatric horses (aged 18-26 years; mean: 21.7 years) for analysis of plasma myeloperoxidase, complete blood counts, and cytokine and receptor expression in response to in vitro stimulation with heat-inactivated Rhodococcus equi, heat-inactivated Escherichia coli, and PMA/ionomycin. Gene expression was measured using RT-PCR for IFNγ, IL-1β, IL-6, IL-8, IL-10, IL-12α, IL-13, IL-17α, TLR2, TLR4, and TNFα. Endocrine function and body weight were measured to assess any potential impacts of ACTH, insulin, or body weight on immune function; none of the horses had pituitary pars intermedia dysfunction. The geriatric horse group had lower concentrations of plasma myeloperoxidase (P = 0.0459) and lower absolute monocyte counts (P = 0.0477); however, the difference in monocyte counts was no longer significant after outliers were removed. Additionally, only two significant differences in cytokine/receptor expression in whole blood were observed. Compared with adult horses, the geriatric horses had increased TNFα expression after in vitro stimulation with heat-inactivated R. equi (P = 0.0224) and had decreased IL-17α expression after PMA/ionomycin stimulation when one outlier was excluded (P = 0.0334). These changes may represent a compensatory mechanism by which geriatric horses could ensure adequate immune responses despite potentially dysfunctional neutrophil activity and/or decreased monocyte counts. Aging may influence equine innate immune function, and additional research is warranted to confirm and further explore these findings.
Collapse
|
13
|
Salinas C, Espinosa G, Morales N, Henríquez C, Morán G, Gajardo G, Uberti B. Assessment of peripheral blood neutrophil respiratory burst, phagocytosis and apoptosis in obese non-insulin dysregulated horses. Res Vet Sci 2020; 132:127-132. [PMID: 32563928 DOI: 10.1016/j.rvsc.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
Obesity is a highly prevalent condition in horses. Dysfunctional neutrophil activity has been reported in metabolically healthy obese humans, but minimal data exist regarding horses. The present study evaluated the effect of obesity on apoptosis, phagocytosis and oxidative burst activity of peripheral blood neutrophils from lean and obese non-insulin dysregulated horses. Seven lean (BCS, body condition score 4-6/9) and five obese (BCS 8-9) horses were enrolled in the study. All animals underwent two metabolic tests (OGT, oral glucose test; IRT, insulin response test) before their selection to ensure their metabolic status (non-insulin dysregulated). A single blood sample was obtained from each horse, and a discontinuous density gradient was carried out to isolate neutrophils. Phagocytosis, apoptosis and reactive oxygen species (ROS) production assays were performed for each animal. All statistical analyses were performed with unpaired two-tailed t-tests. Results indicate that neutrophils from obese non-insulin dysregulated horses have a significantly increased ROS production (P < .0001), with no changes observed on phagocytosis (P > .05) or apoptosis (P > .05) when compared to the control group. In conclusion, our results demonstrate that obesity per se, in absence of other endocrine disorders, alters neutrophil reactive oxygen species production. More research is needed to understand the role of obesity on the equine immune system of horses, and its role in the development of endocrine disorders.
Collapse
Affiliation(s)
- Constanza Salinas
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Gabriel Espinosa
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Natalia Morales
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Gonzalo Gajardo
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Benjamin Uberti
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
14
|
Lopp CT, McCoy AM, Boothe D, Schaeffer DJ, Lascola K. Single-dose pharmacokinetics of orally and rectally administered misoprostol in adult horses. Am J Vet Res 2020; 80:1026-1033. [PMID: 31644339 DOI: 10.2460/ajvr.80.11.1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the pharmacokinetics of a clinically relevant dose of misoprostol administered PO or per rectum (PR) to horses. ANIMALS 8 healthy adult horses. PROCEDURES In a randomized 3-way crossover design, horses received a single dose of misoprostol (5 μg/kg) administered PO (with horses fed and unfed) and PR, with a minimum 3-week washout period separating the experimental conditions. Blood samples were obtained before and at various points after drug administration (total, 24 hours), and plasma concentrations of misoprostol free acid were measured. RESULTS Mean maximum plasma concentration of misoprostol was significantly higher in the PR condition (mean ± SD, 967 ± 492 pg/mL) and unfed PO condition (655 ± 259 pg/mL) than in the fed PO condition (352 ± 109 pg/mL). Mean area under the concentration-versus-time curve was significantly lower in the PR condition (219 ± 131 pg•h/mL) than in the unfed (1,072 ± 360 pg•h/mL) and fed (518 ± 301 pg•h/mL) PO conditions. Mean time to maximum concentration was ≤ 30 minutes for all conditions. Mean disappearance half-life was shortest in the PR condition (21 ± 29 minutes), compared with values for the unfed (170 ± 129 minutes) and fed (119 ± 51 minutes) PO conditions. No adverse effects were noted. CONCLUSIONS AND CLINICAL RELEVANCE Misoprostol was rapidly absorbed and eliminated regardless of whether administered PO or PR to horses. Rectal administration may be a viable alternative for horses that cannot receive misoprostol PO, but this route may require more frequent administration to maintain therapeutic drug concentrations.
Collapse
|
15
|
Banse HE, Andrews FM. Equine glandular gastric disease: prevalence, impact and management strategies. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2019; 10:69-76. [PMID: 31406687 PMCID: PMC6642651 DOI: 10.2147/vmrr.s174427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Equine glandular gastric disease (EGGD) is an increasingly recognized disease of the glandular mucosa of the equine stomach. Diagnosis is confirmed by gastric endoscopy and scored based upon one of several different endoscopic scoring systems. Prevalence appears to be variable, depending upon breed and discipline. Primary identified risk factors include exercise frequency, and stress; therefore, management strategies are focused on reducing exercise and stress. Limiting grain intake and increasing pasture turnout may also be helpful preventative measures. Pharmacologic treatment consists primarily of an approved omeprazole product with or without misoprostol or sucralfate. Further research into the pathophysiology of EGGD may allow for identification of other targeted treatments.
Collapse
Affiliation(s)
- Heidi E Banse
- Equine Health Studies Program, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton RougeLA, USA
| | - Frank M Andrews
- Equine Health Studies Program, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton RougeLA, USA
| |
Collapse
|
16
|
Pitts MG, D'Orazio SEF. Prostaglandin E 2 Inhibits the Ability of Neutrophils to Kill Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2019; 202:3474-3482. [PMID: 31061007 DOI: 10.4049/jimmunol.1900201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/29/2022]
Abstract
PGE2 is a lipid-signaling molecule with complex roles in both homeostasis and inflammation. Depending on the cellular context, PGE2 may also suppress certain immune responses. In this study, we tested whether PGE2 could inhibit bacterial killing by polymorphonuclear neutrophils (PMN) using a mouse model of foodborne listeriosis. We found that PGE2 pretreatment decreased the ability of PMN harvested from the bone marrow of either BALB/cByJ or C57BL/6J mice to kill Listeria monocytogenes in vitro. PGE2 treatment slowed the migration of PMN toward the chemoattractant leukotriene B4, decreased uptake of L. monocytogenes by PMN, and inhibited the respiratory burst of PMN compared with vehicle-treated cells. When immune cells were isolated from the livers of infected mice and tested directly ex vivo for the presence of PGE2, BALB/cByJ cells produced significantly more than C57BL/6J cells. Together, these data suggest that robust PGE2 production can suppress PMN effector functions, leading to decreased bacterial killing, which may contribute to the innate susceptibility of BALB/cByJ mice to infection with the facultative intracellular bacterial pathogen L. monocytogenes.
Collapse
Affiliation(s)
- Michelle G Pitts
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536
| | - Sarah E F D'Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536
| |
Collapse
|
17
|
Martin EM, Schirmer JM, Jones SL, Davis JL. Pharmacokinetics and ex vivo anti-inflammatory effects of oral misoprostol in horses. Equine Vet J 2019; 51:415-421. [PMID: 30256450 PMCID: PMC6587934 DOI: 10.1111/evj.13024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Misoprostol is an E prostanoid (EP) 2, 3 and 4 receptor agonist that is anecdotally used to treat and prevent NSAID-induced GI injury in horses. Misoprostol elicits anti-inflammatory effects in vivo in men and rodents, and inhibits TNFα production in equine leucocytes in vitro. OBJECTIVE Define the pharmacokinetic parameters of oral misoprostol in horses, and determine the inhibitory effect of oral misoprostol administration on equine leucocyte TNFα production in an ex vivo inflammation model. STUDY DESIGN Pharmacokinetic study, ex vivo experimental study. METHODS Six healthy adult horses of mixed breeds were used. In phase one, horses were given 5 μg/kg misoprostol orally, and blood was collected at predetermined times for determination of misoprostol free acid (MFA) by UHPLC-MS/MS. Pharmacokinetic parameters were calculated. In phase two, horses were dosed as in phase one, and blood was collected at T0, 0.5, 1 and 4 h following misoprostol administration for leucocyte isolation. Leucocytes were stimulated with 100 ng/mL LPS, and TNFα mRNA concentrations were determined via quantitative real-time PCR. RESULTS About 5 μg/kg oral misoprostol produced a rapid time to maximum concentration (Tmax ) of 23.4 ± 2.4 min, with a maximum concentration (Cmax ) of 0.29 ± 0.07 ng/mL and area under the curve (AUC0-∞ ) of 0.4 ± 0.12 h ng/mL. LPS stimulation of equine leucocytes ex vivo significantly increased TNFα mRNA concentrations, and there was no significant effect of misoprostol even at the Tmax . MAIN LIMITATIONS Only a single dose was used, and sample size was small. CONCLUSIONS Misoprostol is rapidly absorbed following oral administration in horses, and a single 5 μg/kg dose had no significant inhibitory effect on ex vivo LPS-stimulated TNFα mRNA production in leucocytes. Further studies analysing different dosing strategies, including repeat administration or combination with other anti-inflammatory drugs, are warranted.
Collapse
Affiliation(s)
- E. M. Martin
- North Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - J. M. Schirmer
- North Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - S. L. Jones
- North Carolina State University College of Veterinary MedicineRaleighNorth CarolinaUSA
| | - J. L. Davis
- VA‐MD College of Veterinary MedicineBlacksburgVirginiaUSA
| |
Collapse
|
18
|
Varley G, Bowen IM, Habershon‐Butcher JL, Nicholls V, Hallowell GD. Misoprostol is superior to combined omeprazole‐sucralfate for the treatment of equine gastric glandular disease. Equine Vet J 2019; 51:575-580. [DOI: 10.1111/evj.13087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - I. M. Bowen
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| | | | - V. Nicholls
- School of Veterinary Science University of Liverpool Leahurst UK
| | - G. D. Hallowell
- School of Veterinary Medicine and Science University of Nottingham Loughborough UK
| |
Collapse
|
19
|
Shi L, Dai Y, Jia B, Han Y, Guo Y, Xie T, Liu J, Tan X, Ding P, Li J. The inhibitory effects of Qingchang Wenzhong granule on the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium-induced colitis. J Cell Biochem 2018; 120:9979-9991. [PMID: 30548311 DOI: 10.1002/jcb.28280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is a kind of complex immune disease, the pathogenesis of which remains elusive. Destruction of the intestinal barrier, extreme inflammation, oxidative stress, and apoptosis might play key roles in the development of UC. In previous studies, we observed that Qingchang Wenzhong granule (QCWZG) had the exact effect on the remission of UC in the clinic; however, the underlying mechanism has not been identified. This study aimed to reveal the effects of QCWZG on the intestinal physical barrier and the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium (DSS)-induced colitis. METHODS Sixty rats were randomly divided into six groups: blank group, model group, high/mild/low-dose QCWZG groups, and mesalazine group. The rats in the experimental group drank 4% DSS for 7 days and 1% DSS for the subsequent 7 days. Different medications or distilled water was supplied by intragastric administration for 7 days. The levels of colitis and indices related to inflammation, oxidative stress, and apoptosis were assessed. RESULTS Compared with the model group, the QCWZG group (P < 0.05) demonstrated attenuated disease activity index, colonic mucosa disease index, histological lesions, and colonic weights; lower levels of inflammatory substances, such as interleukin (IL)-1α, IL-6, tumor necrosis factor-α, and myeloperoxidase; lower levels of malondialdehyde; and increased levels of superoxide dismutase and glutathione peroxidase. The QCWZG group also demonstrated elevated expression of Bcl-2 and occluding but downregulated db expression of Bax and caspase 3 in the colon. CONCLUSION QCWZG could relieve rats with DSS-induced colitis from UC symptoms by improving the intestinal physical barrier, which resists the interactive network of inflammation, oxidative stress, apoptosis, and their overactivated interactions.
Collapse
Affiliation(s)
- Lei Shi
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Dai
- Department of Pharmacotherapy and Oriental Medicine, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Boyi Jia
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yafei Han
- Department of Clinical Medicine of Integrated Chinese and Western Medicine of TCM College of Hebei North University, Zhangjiakou, Hebei, China
| | - Yi Guo
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhong Xie
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiali Liu
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Tan
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Panghua Ding
- Graduate school of Beijing University of Chinese Medicine, Beijing, China.,Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Westerman TL, Bogomolnaya L, Andrews-Polymenis HL, Sheats MK, Elfenbein JR. The Salmonella type-3 secretion system-1 and flagellar motility influence the neutrophil respiratory burst. PLoS One 2018; 13:e0203698. [PMID: 30204776 PMCID: PMC6133356 DOI: 10.1371/journal.pone.0203698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022] Open
Abstract
Neutrophils are innate immune response cells designed to kill invading microorganisms. One of the mechanisms neutrophils use to kill bacteria is generation of damaging reactive oxygen species (ROS) via the respiratory burst. However, during enteric salmonellosis, neutrophil-derived ROS actually facilitates Salmonella expansion and survival in the gut. This seeming paradox led us to hypothesize that Salmonella may possess mechanisms to influence the neutrophil respiratory burst. In this work, we used an in vitro Salmonella-neutrophil co-culture model to examine the impact of enteric infection relevant virulence factors on the respiratory burst of human neutrophils. We report that neutrophils primed with granulocyte-macrophage colony stimulating factor and suspended in serum containing complement produce a robust respiratory burst when stimulated with viable STm. The magnitude of the respiratory burst increases when STm are grown under conditions to induce the expression of the type-3 secretion system-1. STm mutants lacking the type-3 secretion system-1 induce less neutrophil ROS than the virulent WT. In addition, we demonstrate that flagellar motility is a significant agonist of the neutrophil respiratory burst. Together our data demonstrate that both the type-3 secretion system-1 and flagellar motility, which are established virulence factors in enteric salmonellosis, also appear to directly influence the magnitude of the neutrophil respiratory burst in response to STm in vitro.
Collapse
Affiliation(s)
- Trina L. Westerman
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - M. Katherine Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Johanna R. Elfenbein
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
21
|
Rendle D, Bowen M, Brazil T, Conwell R, Hallowell G, Hepburn R, Hewetson M, Sykes B. Recommendations for the management of equine glandular gastric disease. ACTA ACUST UNITED AC 2018. [DOI: 10.12968/ukve.2018.2.s1.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|