1
|
Korac L, Golestani N, MacNicol J, Souccar-Young J, Witherspoon S, Wildish A, Topfer S, Pearson W. Effect of a dietary nutraceutical "STRUCTURE-Joint" on response of horses to intra-articular challenge with IL-1: implications for tissue adaptation to stress. Transl Anim Sci 2024; 8:txae172. [PMID: 39713786 PMCID: PMC11660166 DOI: 10.1093/tas/txae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
The purpose was to determine local (articular) and systemic effects of intra-articular interleukin-1 in horses supplemented with a dietary PUFA supplement [STRUCTURE-Joint (ST-J)]. Sixteen (16) healthy, mature, light breed horses were randomly assigned to diets containing 0 or 120 mL (n = 8 per group) of ST-J for 30 d. On days 0 (prior to beginning supplementation) and 27, recombinant equine interleukin-1β (reIL-1 β) (75 ng) was injected into the left or right intercarpal joint to induce mild, transient synovitis. Synovial fluid was obtained by aseptic arthrocentesis at postinjection hour 0 (immediately prior to IL-1 injection), 6, 12, and 72. ST-J supplementation for 30 d significantly increased synovial fluid nitric oxide, and resolvin D1 compared with the unsupplemented control group and significantly increased PGE2 levels and reduced joint circumference in the ST-J treated horses on day 30 compared to the same group of horses on day 0. There was also a significant increase in plasma hemoglobin, free and total bilirubin, and decrease in plasma glucose. These data provide evidence for the usefulness of ST-J to modulate physiological variables with importance in exercise performance and tissue adaptation to exercise stress and further research on this product is warranted.
Collapse
Affiliation(s)
- Lindsay Korac
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nadia Golestani
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer MacNicol
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jamie Souccar-Young
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sophie Witherspoon
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Arayih Wildish
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sydney Topfer
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Ammons DT, Chow L, Goodrich L, Bass L, Larson B, Williams ZJ, Stoneback JW, Dow S, Pezzanite LM. Characterization of the single cell landscape in normal and osteoarthritic equine joints. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:88. [PMID: 39507442 PMCID: PMC11534742 DOI: 10.21037/atm-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024]
Abstract
Background Osteoarthritis (OA) is a major source of pain and disability worldwide. Understanding of disease progression is evolving, but OA is increasingly thought to be a multifactorial disease in which the innate immune system plays a role in regulating and perpetuating low-grade inflammation. The aim of this study was to enhance our understanding of OA immunopathogenesis through characterization of the transcriptomic responses in OA joints, with the goal to facilitate the development of targeted therapies. Methods Single-cell RNA sequencing (scRNA-seq) was completed on cells isolated from the synovial fluid of three normal and three OA equine joints. In addition to synovial fluid, scRNA-seq was also performed on synovium from one normal joint and one OA joint. Results Characterization of 28,639 cells isolated from normal and OA-affected equine synovial fluid revealed the composition to be entirely immune cells (CD45+) with 8 major populations and 26 subpopulations identified. In synovial fluid, we found myeloid cells (macrophage and dendritic cells) to be overrepresented and T cells (CD4 and CD8) to be underrepresented in OA relative to normal joints. Through subcluster and differential abundance analysis of T cells we further identified a relative overrepresentation of IL23R+ gamma-delta (γδ) T cells in OA-affected joints (a cell type we report to be enriched in gene signatures associated with T helper 17 mediated immunity). Analysis of an additional 17,690 cells (11 distinct cell type clusters) obtained from synovium of one horse led to the identification of an OA-associated reduction in the relative abundance of synovial macrophages, which contrasts with the increased relative abundance of macrophages in synovial fluid. Completion of cell-cell interaction analysis implicated myeloid cells in disease progression, suggesting that the myeloid-myeloid interactions were increased in OA-affected joints. Conclusions Overall, this work provides key insights into the composition of equine synovial fluid and synovium in health and OA. The data generated in this study provides equine-specific cell type gene signatures which can be applied to future investigations. Furthermore, our analysis highlights the potential role of macrophages and IL23R+ γδ T cells in OA immunopathogenesis.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Blaine Larson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Usimaki A, Ciamillo SA, Barot D, Linardi RL, Engiles JB, Ortved KF. Single injection of intra-articular autologous protein solution in horses with acute interleukin-1B-induced synovitis decreases joint pathology scores. Equine Vet J 2024. [PMID: 39051479 DOI: 10.1111/evj.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Autologous protein solution (APS) has been shown to decrease lameness in horses with osteoarthritis (OA). Synovitis is an early driver of OA, providing an opportunity to intervene in the progression of disease via intra-articular (IA) therapeutics. OBJECTIVES The objective of this study was to investigate the effects of a single IA APS injection in horses with interleukin-1β (IL-1β)-induced synovitis. We hypothesised that APS would decrease joint swelling and lameness, improve synovial fluid parameters and improve joint pathology scores in horses compared with untreated controls. STUDY DESIGN Randomised controlled in vivo experiment. METHODS Synovitis was induced with IL-1β (65 ng) in one randomly selected tarsocrural joint. Twenty-four hours later, joints were treated with APS (Pro-Stride®) (n = 12) or left as untreated controls (n = 6). Lameness examinations and joint circumference measurements were performed on Days 0 (prior to IL-1β), 1 (prior to APS), 2, 4, 7 and 14. Synovial fluid, obtained on the same days, was analysed for protein concentration, nucleated cell count, and cytokine (IL-1β, TNF-α, IFN-γ, IL-6, IL-10) and prostaglandin E2 (PGE2) concentrations. Gross pathology and synovial membrane histopathology scoring was performed on APS-treated (n = 5), untreated control (n = 4) and normal (n = 9) tarsocrural joints. RESULTS APS did not decrease lameness or joint circumference compared with untreated controls. Synovial fluid parameters were not different between treatment groups. APS treatment did significantly decrease gross and histopathology scores. MAIN LIMITATIONS Main limitations included the use of an induced model of the synovitis, inter-horse variability in the response to IL-1β and likely variability in the constituents of APS from individual horses. CONCLUSIONS APS treatment of tarsocrural joints with synovitis did not significantly improve lameness or alter synovial fluid parameters. APS did lead to significant improvement in gross joint appearance and synovial membrane histology suggesting that APS may have disease-modifying effects.
Collapse
Affiliation(s)
- Alexandra Usimaki
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Sarah A Ciamillo
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Dhvani Barot
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Renata L Linardi
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Julie B Engiles
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies-New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
4
|
Erxleben DA, Dodd RJ, Day AJ, Green DE, DeAngelis PL, Poddar S, Enghild JJ, Huebner JL, Kraus VB, Watkins AR, Reesink HL, Rahbar E, Hall AR. Targeted Analysis of the Size Distribution of Heavy Chain-Modified Hyaluronan with Solid-State Nanopores. Anal Chem 2024; 96:1606-1613. [PMID: 38215004 PMCID: PMC11037269 DOI: 10.1021/acs.analchem.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The glycosaminoglycan hyaluronan (HA) plays important roles in diverse physiological functions where the distribution of its molecular weight (MW) can influence its behavior and is known to change in response to disease conditions. During inflammation, HA undergoes a covalent modification in which heavy chain subunits of the inter-alpha-inhibitor family of proteins are transferred to its structure, forming heavy chain-HA (HC•HA) complexes. While limited assessments of HC•HA have been performed previously, determining the size distribution of its HA component remains a challenge. Here, we describe a selective method for extracting HC•HA from mixtures that yields material amenable to MW analysis with a solid-state nanopore sensor. After demonstrating the approach in vitro, we validate extraction of HC•HA from osteoarthritic human synovial fluid as a model complex biological matrix. Finally, we apply our technique to pathophysiology by measuring the size distributions of HC•HA and total HA in an equine model of synovitis.
Collapse
Affiliation(s)
- Dorothea A. Erxleben
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Rebecca J. Dodd
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Anthony J. Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Suruchi Poddar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, C 8000, Denmark
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda R. Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Adam R. Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
5
|
Everett JB, Menarim BC, Barrett SH, Bogers SH, Byron CR, Pleasant RS, Werre SR, Dahlgren LA. Intra-articular bone marrow mononuclear cell therapy improves lameness from naturally occurring equine osteoarthritis. Front Vet Sci 2023; 10:1256284. [PMID: 37876630 PMCID: PMC10591079 DOI: 10.3389/fvets.2023.1256284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Osteoarthritis (OA) can be debilitating and is related to impaired resolution of synovial inflammation. Current treatments offer temporary relief of clinical signs, but have potentially deleterious side effects. Bone marrow mononuclear cells (BMNC) are a rich source of macrophage progenitors that have the ability to reduce OA symptoms in people and inflammation in experimentally-induced synovitis in horses. The objective of this study was to evaluate the ability of intra-articular BMNC therapy to improve clinical signs of naturally occurring equine OA. Horses presenting with clinical and radiographic evidence of moderate OA in a single joint were randomly assigned to 1 of 3 treatment groups: saline (negative control), triamcinolone (positive control), or BMNC (treatment group). Lameness was evaluated subjectively and objectively, joint circumference measured, and synovial fluid collected for cytology and growth factor/cytokine quantification at 0, 7, and 21 days post-injection. Data were analyzed using General Estimating Equations with significance set at p < 0.05. There were no adverse effects noted in any treatment group. There was a significant increase in synovial fluid total nucleated cell count in the BMNC-treated group on day 7 (median 440; range 20-1920 cells/uL) compared to day 0. Mononuclear cells were the predominant cell type across treatments at all time points. Joint circumference decreased significantly in the BMNC-treated group from days 7 to 21 and was significantly lower at day 21 in the BMNC-treated group compared to the saline-treated group. Median objective lameness improved significantly in the BMNC group between days 7 and 21. GM-CSF, IL-1ra, IGF-1, and TNF-α were below detectable limits and IL-6, IL-1β, FGF-2 were detectable in a limited number of synovial fluid samples. Inconsistent and limited differences were detected over time and between treatment groups for synovial fluid PGE2, SDF-1, MCP-1 and IL-10. Decreased lameness and joint circumference, coupled with a lack of adverse effects following BMNC treatment, support a larger clinical trial using BMNC therapy to treat OA in horses.
Collapse
Affiliation(s)
- J. Blake Everett
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Bruno C. Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Sarah H. Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher R. Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - R. Scott Pleasant
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Stevioside attenuates osteoarthritis via regulating Nrf2/HO-1/NF-κB pathway. J Orthop Translat 2023; 38:190-202. [DOI: 10.1016/j.jot.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
|
7
|
Garbin LC, Contino EK, Olver CS, Frisbie DD. A safety evaluation of allogeneic freeze-dried platelet-rich plasma or conditioned serum compared to autologous frozen products equivalents in equine healthy joints. BMC Vet Res 2022; 18:141. [PMID: 35436878 PMCID: PMC9014566 DOI: 10.1186/s12917-022-03225-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hemoderivatives such as autologous conditioned serum (ACS) and platelet-rich plasma (PRP) have been used as potential disease-modifying therapies in musculoskeletal disorders such as osteoarthritis (OA). These therapies are based on the delivery of multiple growth factors and anti-inflammatory cytokines that are known to participate in inflammatory processes. The variability of cytokine content due to the autologous nature of the product, the non-availability for immediate use and need for storage at low temperatures are limitations for its use in the field. An allogeneic freeze-dried conditioned serum (CS) and PRP would provide field clinicians with a more practical approach to use such products in daily practice. Based on in vitro preliminary data, this experimental study aimed to test the in vivo safety of allogeneic freeze-dried CS and PRP in healthy joints, using the horse as a model. Results Eight horses were randomly assigned and treated with PRP or CS. Horses had three joints injected with ALLO-FD PRP or CS, and three contralateral joints injected with the AUTO version of the same product, by a blinded clinician. Horses were evaluated clinically, and had synovial fluid collected at different time points and evaluated for cell content, PGE2 and protein. Both CS and PRP products triggered a self-limiting and mild inflammatory response in equine healthy joints. This was indicated by the transient increase in nucleated cell count, PGE2 and total protein in synovial fluid. This mild inflammatory response did not result in significant lameness and was not different among the groups. Conclusions The allogeneic freeze-dried PRP and CS showed to be overall safe and not dissimilar compared to their autologous frozen version in equine healthy joints. Further studies are necessary to evaluate the modulatory effects of these therapies in a clinical setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03225-4.
Collapse
Affiliation(s)
- Livia Camargo Garbin
- Equine Orthopaedic Research Center, Colorado State University, 300 West Drake Road, , Fort Collins, CO, 80523, USA.,Present Address: Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, 30602, Athens, GA, USA
| | - Erin K Contino
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, 2350 Drive, Fort Collins, CO, 80523, USA
| | - Christine S Olver
- Veterinary Diagnostic Laboratory, Clinical Pathology Section, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - David D Frisbie
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, 2350 Drive, Fort Collins, CO, 80523, USA.
| |
Collapse
|
8
|
Beck AA, Paz LB, Frank MI, Engelmann AM, Krause A, Côrte FDDL. Safety and synovial inflammatory response after intra-articular injection of botulinum toxin type A in healthy horses. J Equine Vet Sci 2022; 110:103865. [PMID: 35017040 DOI: 10.1016/j.jevs.2022.103865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Botulinum toxin type A (BoNT-A) is a promising alternative for patients suffering from chronic joint pain. The aim of this study was to investigate whether a single injection of BoNT-A would produce adverse effects on clinical parameters and synovial parameters as well as lameness. One randomly selected radiocarpal joint was treated with 50 U of BoNT-A in eight horses, and the contralateral joint received saline solution. All horses received injections at day 0 and were re-evaluated twice daily for seven days for heart rate (HR), respiratory rate (RR), rectal temperature (RT), mucous membrane color, capillary refill time, intestinal motility, appetite, water intake, defecation, urination, and attitude. At these same time points, joint pain and circumference were assessed. Objective lameness evaluations were performed once daily for seven days and synovial fluid samples were collected at baseline, post-injection hour (PIH) 24 and PIH 168 and evaluated for synovial fluid parameters. HR and RT remained clinically unaltered, despite oscillations over time (p=0.001). The remaining clinical parameters were unaltered by treatment or time (p>0.05). Joint pain was not elicited by flexion and palpation in both limbs as well as carpal circumference was not altered (p=0.88). Lameness was observed only on saline limbs. Cellular parameters evaluated in synovial fluid samples from both carpi had significantly increased from baseline to PIH 24, decreasing at PIH 168 (p<0.05). It was concluded that the injection of 50 U BoNT-A is suggested to be a safe therapy for intra-articular use in horses and must be verified by further investigation.
Collapse
Affiliation(s)
- Antônio Alcemar Beck
- Department of Large Animal Clinics, Federal University of Santa Maria, Veterinary Teaching Hospital, Roraima Avenue, 1000 - Camobi, 97105900 Santa Maria, Rio Grande do Sul, Brazil.
| | - Letícia Bisso Paz
- Department of Large Animal Clinics, Equine Sports Medicine and Surgery, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Inês Frank
- College of Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ana Martiele Engelmann
- Department of Small Animal Clinics, Veterinary Clinical Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Alexandre Krause
- Department of Small Animal Clinics, Veterinary Clinical Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Flávio Desessards De La Côrte
- Department of Large Animal Clinics, Equine Sports Medicine and Surgery, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Watkins A, Fasanello D, Stefanovski D, Schurer S, Caracappa K, D'Agostino A, Costello E, Freer H, Rollins A, Read C, Su J, Colville M, Paszek M, Wagner B, Reesink H. Investigation of synovial fluid lubricants and inflammatory cytokines in the horse: a comparison of recombinant equine interleukin 1 beta-induced synovitis and joint lavage models. BMC Vet Res 2021; 17:189. [PMID: 33980227 PMCID: PMC8117281 DOI: 10.1186/s12917-021-02873-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Lameness is a debilitating condition in equine athletes that leads to more performance limitation and loss of use than any other medical condition. There are a limited number of non-terminal experimental models that can be used to study early inflammatory and synovial fluid biophysical changes that occur in the equine joint. Here, we compare the well-established carpal IL-1β-induced synovitis model to a tarsal intra-articular lavage model, focusing on serial changes in synovial fluid inflammatory cytokines/chemokines and the synovial fluid lubricating molecules lubricin/proteoglycan 4 and hyaluronic acid. The objectives of this study were to evaluate clinical signs; synovial membrane and synovial fluid inflammation; and synovial fluid lubricants and biophysical properties in response to carpal IL-1β synovitis and tarsal intra-articular lavage. RESULTS Hyaluronic acid (HA) concentrations, especially high molecular weight HA, and synovial fluid viscosity decreased after both synovitis and lavage interventions. Synovial fluid lubricin concentrations increased 17-20-fold for both synovitis and lavage models, with similar changes in both affected and contralateral joints, suggesting that repeated arthrocentesis alone resulted in elevated synovial fluid lubricin concentrations. Synovitis resulted in a more severe inflammatory response based on clinical signs (temperature, heart rate, respiratory rate, lameness and joint effusion) and clinicopathological and biochemical parameters (white blood cell count, total protein, prostaglandin E2, sulfated glycosaminoglycans, tumor necrosis factor-α and CC chemokine ligands - 2, - 3, - 5 and - 11) as compared to lavage. CONCLUSIONS Synovial fluid lubricin increased in response to IL-1β synovitis and joint lavage but also as a result of repeated arthrocentesis. Frequent repeated arthrocentesis is associated with inflammatory changes, including increased sulfated glycosaminoglycan concentrations and decreased hyaluronic acid concentrations. Synovitis results in more significant inflammatory changes than joint lavage. Our data suggests that synovial fluid lubricin, TNF-α, CCL2, CCL3, CCL5, CCL11 and sGAG may be useful biomarkers for synovitis and post-lavage joint inflammation. Caution should be exercised when performing repeated arthrocentesis clinically or in experimental studies due to the inflammatory response and loss of HA and synovial fluid viscosity.
Collapse
Affiliation(s)
- Amanda Watkins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Diana Fasanello
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Darko Stefanovski
- Department of Biostatistics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Schurer
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Katherine Caracappa
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Albert D'Agostino
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily Costello
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Heather Freer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alicia Rollins
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Claire Read
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Heidi Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Ahn H, Kim J, Lee H, Lee E, Lee GS. Characterization of equine inflammasomes and their regulation. Vet Res Commun 2020; 44:51-59. [PMID: 32297137 DOI: 10.1007/s11259-020-09772-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
Inflammasome, a cytosolic multi-protein complex, assembly is a response to sensing intracellular pathogenic and endogenic danger signals followed by caspase-1 activation, which maturates precursor cytokines such as interleukin (IL)-1β. Most inflammasome research has been undertaken in humans and rodents, and inflammasomes in veterinary species have not been well-characterized. In this study, we observed the effects of well-known inflammasome activators on equine peripheral blood monocytes (PBMCs). The NLRP3 inflammasome triggers include ATP, nigericin, aluminum crystals, and monosodium urate crystals, and NLRP3 activation induces IL-1β secretion in a dose-dependent manner. Activators of NLRC4 and AIM2 inflammasomes include cytosolic flagellin and dsDNA, and their activation induces IL-1β secretion. The bacterial inflammasome triggers Salmonella Typhimurium and Listeria monocytogenes also induce IL-β releases. To elucidate the role of potassium efflux as an upstream signal of NLRP3 inflammasome activation, equine PBMCs were treated with blockers of potassium efflux in the presence of NLRP3 triggers. As a result, the IL-1β secretion stemming from equine NLRP3 inflammasome activation was not completely attenuated by the inhibition of potassium efflux. Taken together, the results indicate that equine PBMCs normally secrete IL-1β in response to well-known inflammasome activators, although equine NLRP3 inflammasome activation might not be dependent on potassium efflux.
Collapse
Affiliation(s)
- Huijeong Ahn
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Jeongeun Kim
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Hansae Lee
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, 24341, Chuncheon, Republic of Korea. .,Laboratory of Inflammatory Diseases, Department of Physiology, College of Veterinary Medicine, Kangwon National University, 24341, Chuncheon, Republic of Korea.
| |
Collapse
|
11
|
Colbath AC, Dow SW, McIlwraith CW, Goodrich LR. Mesenchymal stem cells for treatment of musculoskeletal disease in horses: Relative merits of allogeneic versus autologous stem cells. Equine Vet J 2020; 52:654-663. [PMID: 31971273 DOI: 10.1111/evj.13233] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/18/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used for treatment of musculoskeletal diseases in horses, but there is ongoing debate regarding the relative safety and efficacy of allogeneic MSCs, compared with autologous equine MSCs. This review summarises the currently available published data regarding the therapeutic use of autologous and allogeneic MSCs in horses. Arguments that have been advanced against the use of allogeneic MSCs include higher risk of immunological reactions and shorter cell survival times following injection. Arguments favouring the use of allogeneic MSCs include the ability to bank cells and reduce the time to treatment, to collect MSCs from younger donor animals and the ability to manipulate banked cells prior to administration. In vitro studies and a limited set of experimental in vivo studies have indicated that adverse immunological reactions may occur when allogeneic MSCs are administered to horses. However, newer studies lack evidence of inflammatory reactions or adverse clinical responses when allogeneic MSCs are administered and compared with autologous MSCs. Thus, while the relative merits of allogeneic vs autologous MSCs for treatment of musculoskeletal injuries in horses have not been fully established, accumulating evidence from studies in horses suggests that allogeneic MSCs maybe a safe alternative to autologous MSCs. Large, properly designed, randomised trials in addition to careful immunological evaluation of short-term and long-term, local and systemic immune responses are needed to more fully resolve the issue.
Collapse
Affiliation(s)
- Aimée C Colbath
- Department of Large Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI, USA
| | - Steven W Dow
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA.,Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA
| | - C Wayne McIlwraith
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA
| | - Laurie R Goodrich
- C. Wayne McIlwraith Translational Medicine Institute, Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA.,Department of Clinical Sciences, Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA
| |
Collapse
|
12
|
Colbath AC, Dow SW, Hopkins LS, Phillips JN, McIlwraith CW, Goodrich LR. Single and repeated intra-articular injections in the tarsocrural joint with allogeneic and autologous equine bone marrow-derived mesenchymal stem cells are safe, but did not reduce acute inflammation in an experimental interleukin-1β model of synovitis. Equine Vet J 2020; 52:601-612. [PMID: 31821594 DOI: 10.1111/evj.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Allogeneic and autologous bone marrow-derived mesenchymal stem cells (BMDMSCs) have been administered in equine joints for their anti-inflammatory effects. However, allogeneic BMDMSC offer multiple clinical and practical advantages. Therefore, it is important to determine the relative effectiveness of allogeneic vs autologous BMDMSCs. OBJECTIVES The objective of the study was to compare the inflamed joint response to autologous vs allogeneic BMDMSCs injections, and to determine if either treatment generated an anti-inflammatory effect. STUDY DESIGN Randomised controlled study. METHOD Bone marrow was harvested from eight horses. Autologous BMDMSCs and pooled allogeneic BMDMSCs were culture expanded, cryopreserved and thawed immediately prior to administration. Ten million autologous BMDMSCs were administered with 75 ng rIL-1β into one tarsocrural joint and the contralateral tarsocrural joint received allogeneic BMDMSC plus 75 ng rIL-1β. Repeat injections were performed with the same treatment administered into the same joint. Four additional horses received 75 ng rIL-1β alone in a single tarsocrural joint. Clinical parameters (lameness, joint circumference and joint effusion) and synovial fluid parameters, including nucleated cell count (NCC), differential cell count, total protein (TP), prostaglandin E2 (PGE2 ) and C-reactive protein (CRP), were measured at baseline, 6, 12, 24, 72, 168 and 336 hours post-injection. RESULTS No difference was detected between autologous and allogeneic treatment groups with respect to subjective lameness, joint effusion, joint circumference, NCC, TP, differential cell count, CRP or PGE2 . Neither autologous nor allogeneic treatments resulted in an improvement in clinical or cytological parameters over that elicited by rIL-1β alone. MAIN LIMITATIONS A single dose of rIL-1β was evaluated and resulted in a severe synovitis which may have been too severe to observe a BMDMSC-mediated effect. CONCLUSIONS This study revealed that allogeneic and autologous BMDMSCs resulted in an equivalent clinical and cytological response. Allogeneic and autologous BMDMSCs were equally ineffective in reducing the inflammatory response from acute rIL-1β-induced joint inflammation in horses.
Collapse
Affiliation(s)
- Aimée C Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Steven W Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Leone S Hopkins
- Department of Clinical Sciences, College of Veterinary Medicine, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Jennifer N Phillips
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - C Wayne McIlwraith
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Laurie R Goodrich
- Orthopedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|