1
|
Tryland M, Cunha CW, Fuchs B, Breines EM, Li H, Jokelainen P, Laaksonen S. A serological screening for potential viral pathogens among semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) in Finland. Acta Vet Scand 2023; 65:8. [PMID: 36814283 PMCID: PMC9948369 DOI: 10.1186/s13028-023-00671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Reindeer herding and husbandry is a traditional and important livelihood in Fennoscandia, and about 200,000 semi-domesticated reindeer are herded in Finland. Climatic changes, leading to ice-locked winter pastures, and encroachment of pasture-land have led to changes in reindeer husbandry, increasing the extent of supplementary or full ration feeding, which has become very common in Finland. Keeping reindeer in corrals or gathering them at permanent feeding sites will increase nose-to-nose contact between animals and they may be exposed to poor hygienic conditions. This may impact the epidemiology of infectious diseases, such as viral infections. The aim of this study was to investigate Finnish semi-domesticated reindeer for exposure to viral pathogens. Blood samples were collected from 596 reindeer (358 calves, 238 adults) in 2015, from nine reindeer slaughterhouses, representing most of the reindeer herding regions in Finland. Plasma samples were investigated for antibodies against a selection of known and potential reindeer viral pathogens by using enzyme linked immunosorbent assays (ELISA). RESULTS The screening suggested that alphaherpesvirus and gammaherpesvirus (malignant catarrhal fever virus group; MCFV) were enzootic in the reindeer population, with a seroprevalence of 46.5% (range at slaughterhouse level 28.6-64.3%) and 29.0% (range 3.5-62.2%), respectively. Whereas the seroprevalence was significantly higher for alphaherpesvirus among adult reindeer (91.2%) as compared to calves (16.8%), no age difference was revealed for antibodies against gammaherpesvirus. For alphaherpesvirus, the seroprevalence in the northernmost region, having the highest animal density (animals/km2), was significantly higher (55.6%) as compared to the southernmost region (36.2%), whereas the seroprevalence pattern for gammaherpesvirus indicated the opposite, with 8.1% in the north and 50.0% in the south. Four reindeer (0.7%) had antibodies against Pestivirus, whereas no antibodies were detected against Bluetongue virus or Schmallenbergvirus. CONCLUSIONS Alphaherpesvirus and gammaherpesvirus (MCFV) seems to be enzootic in the Finnish reindeer population, similar to other reindeer herds in Fennoscandia, whereas the exposure to Pestivirus was low compared to findings in Norway and Sweden. The ongoing changes in the reindeer herding industry necessitate knowledge on reindeer health and diseases that may impact animal welfare and health of reindeer as well as the economy of the reindeer herding industry.
Collapse
Affiliation(s)
- Morten Tryland
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsö, Norway
| | - Cristina Wetzel Cunha
- Animal Disease Research Unit, US Department of Agriculture-Agricultural Research Service, Washington State University, Pullman, WA USA
| | - Boris Fuchs
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsö, Norway
| | - Eva Marie Breines
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, 2480 Koppang, Norway
| | - Hong Li
- Animal Disease Research Unit, US Department of Agriculture-Agricultural Research Service, Washington State University, Pullman, WA USA
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sauli Laaksonen
- Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
A Screening for Virus Infections among Wild Eurasian Tundra Reindeer ( Rangifer tarandus tarandus) in Iceland, 2017-2019. Viruses 2023; 15:v15020317. [PMID: 36851530 PMCID: PMC9961133 DOI: 10.3390/v15020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
A winter population of around 4000-5000 wild Eurasian tundra reindeer (Rangifer t. tarandus) in the eastern part of Iceland represents descendants from 35 semi-domesticated reindeer imported to Iceland from Finnmark county, Norway, in 1787. While previous studies have indicated that they host fewer parasite species as compared to reindeer in Fennoscandia, little information exists on their exposure to reindeer viral pathogens. The aim of this study was to investigate blood from hunted reindeer for antibodies against alphaherpesvirus and gammaherpesviruses (malignant catarrhal fever viruses, MCFV), pestivirus, bluetongue virus, and Schmallenberg virus, and to investigate nasal and oral mucosal membrane swab samples for the presence of parapoxvirus-specific DNA. Blood samples collected during the hunting seasons in 2017 (n = 40), 2018 (n = 103), and 2019 (n = 138) were tested for viral antibodies using enzyme-linked immunosorbent assays (ELISA). Screening for parapoxvirus DNA was conducted on swab samples from 181 reindeer by polymerase chain reaction (PCR), targeting the B2L and GIF genes. Antibodies against pestivirus were detected in two animals from 2017, and antibodies against MCFV were detected in two reindeer from 2018. No antibodies were detected against the other viruses tested. Parapoxvirus-specific DNA was detected in nasal swab samples from two animals sampled in 2019. This study suggests that the investigated viral infections are either not present or present at a low prevalence only, probably not representing a major health threat to this reindeer population. The lack of exposure to alphaherpesvirus, an enzootic pathogen in most investigated Rangifer populations, was unexpected.
Collapse
|
3
|
Lukacs M, Nymo IH, Madslien K, Våge J, Veiberg V, Rolandsen CM, Bøe CA, Sundaram AYM, Grimholt U. Functional immune diversity in reindeer reveals a high Arctic population at risk. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1058674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Climate changes the geographic range of both species as well as pathogens, causing a potential increase in the vulnerability of populations or species with limited genetic diversity. With advances in high throughput sequencing (HTS) technologies, we can now define functional expressed genetic diversity of wild species at a larger scale and identify populations at risk. Previous studies have used genomic DNA to define major histocompatibility complex (MHC) class II diversity in reindeer. Varying numbers of expressed genes found in many ungulates strongly argues for using cDNA in MHC typing strategies to ensure that diversity estimates relate to functional genes. We have used available reindeer genomes to identify candidate genes and established an HTS approach to define expressed MHC class I and class II diversity. To capture a broad diversity we included samples from wild reindeer from Southern Norway, semi-domesticated reindeer from Northern Norway and reindeer from the high Artic archipelago Svalbard. Our data show a medium MHC diversity in semi-domesticated and wild Norwegian mainland reindeer, and low MHC diversity reindeer in Svalbard reindeer. The low immune diversity in Svalbard reindeer provides a potential risk if the pathogenic pressure changes in response to altered environmental conditions due to climate change, or increased human-related activity.
Collapse
|
4
|
Tryland M, Sánchez Romano J, Nymo IH, Breines EM, Ancin Murguzur FJ, Kjenstad OC, Li H, Cunha CW. A Screening for Virus Infections in Eight Herds of Semi-domesticated Eurasian Tundra Reindeer ( Rangifer tarandus tarandus) in Norway, 2013-2018. Front Vet Sci 2021; 8:707787. [PMID: 34712719 PMCID: PMC8546225 DOI: 10.3389/fvets.2021.707787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Previous serological screenings have indicated that Eurasian semi-domesticated tundra reindeer (Rangifer tarandus tarandus) in Finnmark, Northern Norway, are exposed to alphaherpesvirus, gammaherpesvirus and pestivirus. Alphaherpesvirus (i.e., Cervid herpesvirus 2; CvHV2) has been identified as the transmissible component of infectious keratoconjunctivitis (IKC). Limited knowledge exists on the presence and prevalence of virus infections in other herding regions in Norway, which are hosting ~67,000 semi-domesticated reindeer and have contact with other species and populations of wildlife and livestock than those present in Finnmark. Methods: Blood samples (n = 618) were obtained over five winter seasons (2013-2018), from eight different herds representing summer pasture districts in Tana, Lakselv, Tromsø, Lødingen, Hattfjelldal, Fosen, Røros, and Filefjell, distributed from North to South of the reindeer herding regions in Norway. Blood samples were investigated for specific antibodies against five viral pathogen groups, alphaherpesvirus, gammaherpesvirus (viruses in the malignant catarrhal fever group; MCFV), pestivirus, bluetongue virus (BTV), and Schmallenberg virus (SBV), by using commercial multispecies serological tests (ELISA). In addition, swab samples obtained from the nasal mucosal membrane from 486 reindeer were investigated by PCR for parapoxvirus-specific DNA. Results: Antibodies against aphaherpesvirus and MCFV were found in all eight herds, with a total prevalence of 42% (range 21-62%) and 11% (range 2-15%), respectively. Anti-Pestivirus antibodies were detected in five of eight herds, with a total prevalence of 19% (range 0-52%), with two of the herds having a particularly high seroprevalence. Antibodies against BTV or SBV were not detected in any of the animals. Parapoxvirus-specific DNA was detected in two animals representing two different herds in Finnmark. Conclusions: This study confirmed that alphaherpesvirus and MCFV are enzootic throughout the geographical reindeer herding regions in Norway, and that pestivirus is present in most of the herds, with varying seroprevalence. No exposure to BTV and SBV was evident. This study also indicated that semi-domesticated reindeer in Finnmark are exposed to parapoxvirus without disease outbreaks being reported from this region.
Collapse
Affiliation(s)
- Morten Tryland
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Koppang, Norway
| | - Javier Sánchez Romano
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Eva Marie Breines
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Ole Christian Kjenstad
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Hong Li
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Cristina W Cunha
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA, United States.,Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Screening of Eurasian Tundra Reindeer for Viral Sequences by Next-Generation Sequencing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126561. [PMID: 34207171 PMCID: PMC8296488 DOI: 10.3390/ijerph18126561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Reindeer husbandry is essential for the livelihood and culture of indigenous people in the Arctic. Parts of the herding areas are also used as pastures for farm animals, facilitating potential transmission of viruses between species. Following the Covid-19 pandemic, viruses circulating in the wild are receiving increased attention, since they might pose a potential threat to human health. Climate change will influence the prevalence of infectious diseases of both humans and animals. The aim of this study was to detect known and previously unknown viruses in Eurasian tundra reindeer. In total, 623 nasal and 477 rectal swab samples were collected from reindeer herds in Fennoscandia, Iceland, and Eastern Russia during 2016–2019. Next-generation sequencing analysis and BLAST-homology searches indicated the presence of viruses of domesticated and wild animals, such as bovine viral diarrhea virus, bovine papillomavirus, alcephaline herpesvirus 1 and 2, deer mastadenovirus B, bovine rotavirus, and roe deer picobirnavirus. Several viral species previously found in reindeer and some novel species were detected, although the clinical relevance of these viruses in reindeer is largely unknown. These results indicate that it should be possible to find emerging viruses of relevance for both human and animal health using reindeer as a sentinel species.
Collapse
|
6
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH. Epidemiologic and Public Health Significance of Toxoplasma gondii Infections in Venison: 2009-2020. J Parasitol 2021; 107:309-319. [PMID: 33886960 DOI: 10.1645/20-162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii infections are common in humans and animals worldwide. The ingestion of food or water contaminated with oocysts excreted by infected cats or ingestion of uncooked or undercooked meat containing tissue cysts of T. gondii are the 2 major modes of transmission of T. gondii. Deer are a popular game. Recently, outbreaks of clinical toxoplasmosis were reported in humans in North America linked to ingestion of undercooked venison. Here, we review prevalence, persistence of infection, clinical disease, epidemiology, and public health risks of T. gondii infections in deer and other cervids for the past decade. Estimates of worldwide serological prevalence are summarized individually for each species of deer, elk, moose, and caribou. Genetic diversity of 112 viable isolates of T. gondii from cervids is discussed, including its public health significance. Prevalence of T. gondii in deer is very high. Any part of a deer, including liver, spleen, and muscles, should be cooked thoroughly before human consumption.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - F H A Murata
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - C K Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| | - O C H Kwok
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, Maryland 20705-2350
| |
Collapse
|
7
|
Caballero-Gómez J, Cano Terriza D, Pujols J, Martínez-Nevado E, Carbonell MD, Guerra R, Recuero J, Soriano P, Barbero J, García-Bocanegra I. Monitoring of bluetongue virus in zoo animals in Spain, 2007-2019. Transbound Emerg Dis 2021; 69:1739-1747. [PMID: 33963677 DOI: 10.1111/tbed.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 12/01/2022]
Abstract
Bluetongue (BT) is an emerging and re-emerging communicable vector-borne disease of animal health concern. A serosurvey was performed to assess exposure to BT virus (BTV) in zoo animals in Spain and to determine the dynamics of seropositivity in longitudinally sampled individuals during the study period. Serum samples were collected from 241 zoo animals belonging to 71 different species in five urban zoos (A-E) in Spain between 2007 and 2019. Twenty-four of these animals were longitudinally surveyed at three of the sampled zoos (zoos B, C and E) during the study period. Anti-BTV antibodies were found in 46 (19.1%; 95% CI: 14.1-24.1) of the 241 captive animals analysed by commercial ELISA. A virus neutralization test confirmed specific antibodies against BTV-1 and BTV-4 in 25 (10.7%; 95% CI: 6.7-14.6) and five (3.0%; 95% CI: 0.3-4.0) animals, respectively. Two of the 24 longitudinally sampled individuals (one African elephant (Loxodanta africana) and one aoudad (Ammotragus lervia)) showed anti-BTV antibodies at all samplings, whereas seroconversions were detected in one mouflon (Ovis aries musimon) in 2016, and one Asian elephant (Elephas maximus) in 2019. To the best of the authors' knowledge, this is the first large-scale survey on BTV conducted in both artiodactyl and non-artiodactyl zoo species worldwide. The results confirm BTV exposure in urban zoo parks in Spain, which could be of animal health and conservation concern. Circulation of BTV was detected in yearling animals in years when there were no reports of BTV outbreaks in livestock. Surveillance in artiodactyl and non-artiodactyl zoo species could be a valuable tool for epidemiological monitoring of BTV.
Collapse
Affiliation(s)
- Javier Caballero-Gómez
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Córdoba, Spain.,Clinical Virology and Zoonoses Group, Infectious Diseases Unit, Maimonides Biomedical Research Institute of Cordoba, Reina Sofia Hospital, University of Cordoba, Córdoba, Spain
| | - David Cano Terriza
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Córdoba, Spain
| | - Joan Pujols
- IRTA, Animal Health Research Center (CReSA, IRTA-UAB), Campus of the Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | - Jesús Recuero
- Veterinary and Conservation Department, Bioparc Fuengirola, Málaga, Spain
| | | | - Jesús Barbero
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Córdoba, Spain
| | - Ignacio García-Bocanegra
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Cordoba, Córdoba, Spain
| |
Collapse
|
8
|
Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer ( Rangifer tarandus). BIOLOGY 2021; 10:biology10030222. [PMID: 33805829 PMCID: PMC7998281 DOI: 10.3390/biology10030222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins function and allow them to take on different roles in health and disease processes. Profiling of deiminated proteins in reindeer showed that many important pathways for immune defenses, prion diseases and metabolism are enriched in deiminated proteins, both in plasma, as well as in plasma extracellular vesicles. This study provides a platform for the development of novel biomarkers to assess wild life health status and factors relating to zoonotic disease. Abstract The reindeer (caribou) Rangifer tarandus is a Cervidae in the order Artiodactyla. Reindeer are sedentary and migratory populations with circumpolar distribution in the Arctic, Northern Europe, Siberia and North America. Reindeer are an important wild and domesticated species, and have developed various adaptive strategies to extreme environments. Importantly, deer have also been identified to be putative zoonotic carriers, including for parasites, prions and coronavirus. Therefore, novel insights into immune-related markers are of considerable interest. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which causes post-translational protein deimination by converting arginine into citrulline in target proteins. This affects protein function in health and disease. Extracellular vesicles (EVs) participate in cellular communication, in physiological and pathological processes, via transfer of cargo material, and their release is partly regulated by PADs. This study assessed deiminated protein and EV profile signatures in plasma from sixteen healthy wild female reindeer, collected in Iceland during screening for parasites and chronic wasting disease. Reindeer plasma EV profiles showed a poly-dispersed distribution from 30 to 400 nm and were positive for phylogenetically conserved EV-specific markers. Deiminated proteins were isolated from whole plasma and plasma EVs, identified by proteomic analysis and protein interaction networks assessed by KEGG and GO analysis. This revealed a large number of deimination-enriched pathways for immunity and metabolism, with some differences between whole plasma and EVs. While shared KEGG pathways for whole plasma and plasma EVs included complement and coagulation pathways, KEGG pathways specific for EVs were for protein digestion and absorption, platelet activation, amoebiasis, the AGE–RAGE signaling pathway in diabetic complications, ECM receptor interaction, the relaxin signaling pathway and the estrogen signaling pathway. KEGG pathways specific for whole plasma were pertussis, ferroptosis, SLE, thyroid hormone synthesis, phagosome, Staphylococcus aureus infection, vitamin digestion and absorption, and prion disease. Further differences were also found between molecular function and biological processes GO pathways when comparing functional STRING networks for deiminated proteins in EVs, compared with deiminated proteins in whole plasma. This study highlights deiminated proteins and EVs as candidate biomarkers for reindeer health and may provide information on regulation of immune pathways in physiological and pathological processes, including neurodegenerative (prion) disease and zoonosis.
Collapse
|
9
|
Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens 2021; 10:210. [PMID: 33669161 PMCID: PMC7919684 DOI: 10.3390/pathogens10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
Collapse
Affiliation(s)
- Johana Hrnková
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| | - Irena Schneiderová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 2 128 00 Prague, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
- Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| |
Collapse
|
10
|
Caballero-Gómez J, García-Bocanegra I, Navarro N, Guerra R, Martínez-Nevado E, Soriano P, Cano-Terriza D. Zoo animals as sentinels for Schmallenberg virus monitoring in Spain. Vet Microbiol 2020; 252:108927. [PMID: 33243564 DOI: 10.1016/j.vetmic.2020.108927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
Schmallenberg virus (SBV) is a newly emerged vector-borne pathogen that affects many domestic and wild animal species. A serosurvey was carried out to assess SBV exposure in zoo animals in Spain and to determine the dynamics of seropositivity in longitudinally sampled individuals. Between 2002 and 2019, sera from 278 animals belonging to 73 different species were collected from five zoos (A-E). Thirty-one of these animals were longitudinally sampled at three of these zoo parks during the study period. Seropositivity was detected in 28 (10.1 %) of 278 animals analyzed by blocking ELISA. Specific anti-SBV antibodies were confirmed in 20 (7.2 %; 95 %CI: 4.2-10.3) animals of six different species using virus neutralization test (VNT). The multiple logistic regression model showed that "order" (Artiodactyla) and "zoo provenance" (zoo B; southern Spain) were risk factors potentially associated with SBV exposure. Two (8.7 %) of the 31 longitudinally-sampled individuals showed specific antibodies against SBV at all samplings whereas seroconversion was detected in one mouflon (Ovis aries musimon) and one Asian elephant (Elephas maximus) in 2016 and 2019, respectively. To the best of the author's knowledge, this is the first surveillance conducted on SBV in zoos in Spain. The results confirm SBV exposure in zoo animals in this country and indicate circulation of the virus before the first Schmallenberg disease outbreak was reported in Spain. Surveillance in zoological parks could be a complementary approach to monitoring SBV activity. Further studies are warranted to assess the impact of this virus on the health status of susceptible zoo animals.
Collapse
Affiliation(s)
- J Caballero-Gómez
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba (UCO), 14014 Córdoba, Spain; Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), 14004 Córdoba, Spain
| | - I García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba (UCO), 14014 Córdoba, Spain.
| | - N Navarro
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - R Guerra
- Centro de conservación Zoo Córdoba, Córdoba, 14004, Spain
| | | | - P Soriano
- Río Safari Elche, 03139 Alicante, Spain
| | - D Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba (UCO), 14014 Córdoba, Spain
| |
Collapse
|
11
|
Severe Anaplasma phagocytophilum and Babesia divergens Concomitant Infection in Imported Captive Reindeer ( Rangifer tarandus). MACEDONIAN VETERINARY REVIEW 2020. [DOI: 10.2478/macvetrev-2020-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Tick-borne diseases are highly prevalent in domestic and wild ruminants and they may be distributed in wide geographical ranges by animal transportation. The aim of the current study was to investigate the presence of European strains of Babesia spp. and/or Anaplasma spp. in oversea imported reindeer specimens. Imported specimens (n=7) were hospitalized with visible tick infestation (Ixodes ricinus) and signs of cachexia, anemia, and hemoglobinuria. Using blood smears, PCR, and BLAST comparisons, it was confirmed that the animals were infected with a French strain of Anaplasma phagocytophilum and Babesia divergens which is considered to be absent in the USA. We conclude that oversea importation of reindeers must be followed with a routine check for geographically-specific strains of pathogens from the place of origin. This monitoring process must be dynamic and according to recent reports of tick-borne pathogens.
Collapse
|
12
|
das Neves CG, Sacristán C, Madslien K, Tryland M. Gammaherpesvirus in Cervid Species from Norway: Characterization of a New Virus in Wild and Semi-Domesticated Eurasian Tundra Reindeer ( Rangifer tarandus tarandus). Viruses 2020; 12:E876. [PMID: 32796534 PMCID: PMC7471987 DOI: 10.3390/v12080876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesvirus infections have been described in cervids worldwide, mainly the genera Macavirus or Rhadinovirus. However, little is known about the gammaherpesviruses species infecting cervids in Norway and Fennoscandia. Blood samples from semi-domesticated (n = 39) and wild (n = 35) Eurasian tundra reindeer (Rangifer tarandus tarandus), moose (Alces alces, n = 51), and red deer (Cervus elaphus, n = 41) were tested using a panherpesvirus DNA polymerase (DPOL) PCR. DPOL-PCR-positive samples were subsequently tested for the presence of glycoprotein B (gB) gene. The viral DPOL gene was amplified in 28.2% (11/39) of the semi-domesticated reindeer and in 48.6% (17/35) of the wild reindeer. All moose and red deer tested negative. Additionally, gB gene was amplified in 4 of 11 semi-domesticated and 15 of 17 wild Eurasian reindeer DPOL-PCR-positive samples. All the obtained DPOL and gB sequences were highly similar among them, and corresponded to a novel gammaherpesvirus species, tentatively named Rangiferine gammaherpesvirus 1, that seemed to belong to a genus different from Macavirus and Rhadinovirus. This is the first report of a likely host-specific gammaherpesvirus in semi-domesticated reindeer, an economic and cultural important animal, and in wild tundra reindeer, the lastpopulation in Europe. Future studies are required to clarify the potential impact of this gammaherpesvirus on reindeer health.
Collapse
Affiliation(s)
- Carlos G. das Neves
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106 Oslo, Norway; (C.S.); (K.M.)
| | - Carlos Sacristán
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106 Oslo, Norway; (C.S.); (K.M.)
| | - Knut Madslien
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106 Oslo, Norway; (C.S.); (K.M.)
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019 Tromsø, Norway;
| |
Collapse
|
13
|
van Oort BEH, Hovelsrud GK, Risvoll C, Mohr CW, Jore S. A Mini-Review of Ixodes Ticks Climate Sensitive Infection Dispersion Risk in the Nordic Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5387. [PMID: 32726948 PMCID: PMC7432026 DOI: 10.3390/ijerph17155387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022]
Abstract
Climate change in the Nordic countries is projected to lead to both wetter and warmer seasons. This, in combination with associated vegetation changes and increased animal migration, increases the potential incidence of tick-borne diseases (TBD) where already occurring, and emergence in new places. At the same time, vegetation and animal management influence tick habitat and transmission risks. In this paper, we review the literature on Ixodes ricinus, the primary vector for TBD. Current and projected distribution changes and associated disease transmission risks are related to climate constraints and climate change, and this risk is discussed in the specific context of reindeer management. Our results indicate that climatic limitations for vectors and hosts, and environmental and societal/institutional conditions will have a significant role in determining the spreading of climate-sensitive infections (CSIs) under a changing climate. Management emerges as an important regulatory "tool" for tick and/or risk for disease transfer. In particular, shrub encroachment, and pasture and animal management, are important. The results underscore the need to take a seasonal view of TBD risks, such as (1) grazing and migratory (host) animal presence, (2) tick (vector) activity, (3) climate and vegetation, and (4) land and animal management, which all have seasonal cycles that may or may not coincide with different consequences of climate change on CSI migration. We conclude that risk management must be coordinated across the regions, and with other land-use management plans related to climate mitigation or food production to understand and address the changes in CSI risks.
Collapse
Affiliation(s)
- Bob E. H. van Oort
- CICERO Center for International Climate Research, P.O. Box 1129, Blindern, 0318 Oslo, Norway
| | - Grete K. Hovelsrud
- Nord University and Nordland Research Institute, P.O. Box 1490, 8049 Bodø, Norway;
| | - Camilla Risvoll
- Nordland Research Institute, P.O. Box 1490, 8049 Bodø, Norway;
| | - Christian W. Mohr
- The Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway;
| | - Solveig Jore
- Norwegian Public Health Institute, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| |
Collapse
|