1
|
Meinen-Jochum J, Skow CJ, Mellata M. Layer segmented filamentous bacteria colonize and impact gut health of broiler chickens. mSphere 2024:e0049224. [PMID: 39422489 DOI: 10.1128/msphere.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In commercial poultry farms, chicks hatch away from their progenitors from which they acquire key host-specific microbiota, like segmented filamentous bacteria (SFB) involved in gut maturation in early life. This study investigated whether providing chicken SFB to newly hatched broilers would increase their gut maturation and resistance to bacteria relevant to broiler and human health. One-day-old Ross308 broilers were orally treated with either phosphate-buffered saline (CON) or layer-derived SFB (D-SFB). On days 5, 10, 17, and 24, feces were collected to detect and enumerate SFB and Enterobacteriaceae. On days 8, 15, 22, and 29, birds were euthanized, intestinal samples were collected to detect and enumerate SFB through quantitative PCR (qPCR) and microscopy and expression of genes associated with gut immune function through reverse transcription-qPCR. This study showed that, despite their host specificity, layer SFB can colonize their genetically distinct relative broilers. Ileal SFB colonization was accelerated by a week with the SFB treatment and covered the proximal, medial, and distal sections of the ileum. Colonization of the ileum by SFB in early life highly activated gene expression of intestinal barrier proteins and cytokines, e.g., IL-10 and IFNγ but not IL-17. SFB treatment reduced the level of Enterobacteriaceae in the gut and provided superior resistance to intestinal and extraintestinal pathogens as tested in vitro. Overall, early gut colonization of SFB is imperative for the maturation of the gut immune system and the establishment of a homeostatic gut environment. Improving our understanding of gut immune maturation in food-producing animals is crucial for both human and animal health.IMPORTANCEIn commercial farms, newly hatched chicks may lack host-specific microbiota that help mature their gut immune system for lifelong health benefits. Here, introducing an avian segmented filamentous bacteria (SFB) to commercially sourced chickens orally at hatch accelerated SFB colonization of the ileum. Remarkably, SFB from layers were able to colonize broilers and enhance gut immune maturation, and this immunomodulation impacted the ability to increase intestinal and extraintestinal resistance to bacteria relevant to poultry and human health. With the antibiotic restrictions in animal production, strategies that will help mitigate infections are urgently needed. In summary, we developed a live prophylactic for newly hatched chicks to improve animal health and food safety. Due to the host specificity of SFB, our data highlight the importance of investigating the molecular mechanism of SFB interaction in their own host.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Caleb J Skow
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Lages da Silva DH, Marques da Silva RL, Rios DL, de Souza DDG, Aburjaile F, de Freitas Neto OC, Camargos Lara LJ, Dias Araújo M, Ecco R. Intestinal microbiota diversity from broilers with runting and stunting syndrome performed by metagenomics. Avian Pathol 2024; 53:408-418. [PMID: 38662518 DOI: 10.1080/03079457.2024.2348509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Runting and stunting syndrome (RSS) is an enteric viral disease in commercial poultry that directly affects gut health; however, its influence on gut microbiota remains unknown. This study aimed to investigate the compositional changes in the bacterial community of the ileum of 7-day-old broiler chicks naturally affected or not affected by RSS, using next-generation sequencing (NGS) technology. Twenty-one samples were obtained from the ileal contents and mucosa of 11 chicks with RSS and 10 healthy chicks, raised in a dark house system located on a farm in the state of Minas Gerais, Brazil. The results revealed overall changes in the gut microbiota of the chicks with RSS, including a decrease in microbial richness and diversity. In particular, there was a decrease in Lactobacillus and an increase in Candidatus Arthromitus and Clostridium sensu stricto 1. These results indicate a relationship between viral infection and the gut microbial composition, which can cause gut dysbiosis and may influence inflammation in this organ.RESEARCH HIGHLIGHTS RSS causes dysbiosis of the gut microbiota of the ilea of chicks.A difference was found in gut microbiota between chicks with or without RSS.Candidatus Arthromitus was predominant in chicks with RSS.Clostridium sensu stricto 1 was strictly associated with chicks with RSS.
Collapse
Affiliation(s)
- Dayse Helena Lages da Silva
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Rodrigo Luiz Marques da Silva
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diego Lisboa Rios
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Danielle da Glória de Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Flávia Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Oliveiro Caetano de Freitas Neto
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Leonardo José Camargos Lara
- Department of Zootechnics, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Matheus Dias Araújo
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Roselene Ecco
- Pathology Sector and MULTILAB, Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Watts A, Wigley P. Avian Pathogenic Escherichia coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics (Basel) 2024; 13:809. [PMID: 39334984 PMCID: PMC11429189 DOI: 10.3390/antibiotics13090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Avian Pathogenic Escherichia coli (APEC) is an extraintestinal pathotype of E. coli that leads to a range of clinical manifestations, including respiratory, systemic and reproductive infections of chickens in both egg and meat production. Unlike most E. coli pathotypes, APEC is not defined by specific virulence genes but rather is a collection of several distinct genotypes that can act as both primary and secondary pathogens leading to colibacillosis. Recent measures to reduce antimicrobials both as growth promoters and as flock-level therapeutics are considered to have led to increased numbers of animals affected. Nevertheless, antimicrobial resistance is a considerable problem in APEC, with resistance to third and fourth-generation cephalosporins via extended-spectrum beta-lactamases (ESBLs), fluoroquinolones and colistin seen as a particular concern. The need to control APEC without antimicrobial use at the flock level has seen an increased focus on vaccination. Currently, a few commercial vaccines are already available, and a range of approaches are being applied to develop new vaccines, and other controls, such as bacteriophage or probiotics, are attracting interest. The lack of a single defined APEC genotype presents challenges to these approaches.
Collapse
Affiliation(s)
- Amyleigh Watts
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK;
| | - Paul Wigley
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK
| |
Collapse
|
4
|
da Silva JMS, Almeida AMDS, Borsanelli AC, de Athayde FRF, Nascente EDP, Batista JMM, Gouveia ABVS, Stringhini JH, Leandro NSM, Café MB. Intestinal Microbiome Profiles in Broiler Chickens Raised with Different Probiotic Strains. Microorganisms 2024; 12:1639. [PMID: 39203481 PMCID: PMC11357238 DOI: 10.3390/microorganisms12081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The composition of the intestinal microbiota can influence the metabolism and overall functioning of avian organisms. Therefore, the objective of this study was to evaluate the effect of three different probiotics and an antibiotic on the microbiomes of 1.400 male Cobb® broiler raised for 42 days. The experiment was conducted with the following treatments: positive control diet (basal diet + antibiotic); negative control diet (basal diet without antibiotic and without probiotic); basal diet + Normal Avian Gut Flora (NAGF); basal diet + multiple colonizing strain probiotics (MCSPs); and basal diet + non-colonizing single strain probiotics (NCSSPs). The antibiotic (enramycin-antibiotic growth promoter) and probiotics were administered orally during all experiment (1 to 42 days), mixed with broiler feed. To determine the composition of the microbiota, five samples of ileal digesta were collected from 42-day-old chickens of each experimental group. The alpha and beta diversity of the ileal microbiota showed differences between the groups. MCSPs presented greater richness and uniformity compared to the positive control, negative control, and NCSSPs treatments, while the negative control exhibited greater homogeneity among samples than NCSSPs. MCSPs also showed a higher abundance of the genus Enterococcus. There were differences between the groups for low-abundance taxa (<0.5%), with NAGF showing higher levels of Delftia, Brevibacterium, and Bulleidia. In contrast, NCSSPs had a higher abundance of Ochrobactrum, Rhodoplanes, and Nitrospira. It was concluded that the treatments analyzed in this study induced modulations in the ileal microbiota of the chickens examined.
Collapse
Affiliation(s)
- Julia Marixara Sousa da Silva
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Ana Maria De Souza Almeida
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Ana Carolina Borsanelli
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | | | - Eduardo de Paula Nascente
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - João Marcos Monteiro Batista
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Alison Batista Vieira Silva Gouveia
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - José Henrique Stringhini
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Nadja Susana Mogyca Leandro
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| | - Marcos Barcellos Café
- Veterinary and Animal Science School, Federal University of Goiás, Goiania 74605-080, Goiás, Brazil; (J.M.S.d.S.); (A.M.D.S.A.); (A.C.B.); (E.d.P.N.); (J.M.M.B.); (A.B.V.S.G.); (J.H.S.); (N.S.M.L.)
| |
Collapse
|
5
|
Shterzer N, Sbehat Y, Poudel B, Rothschild N, Oloko OE, Druyan S, Mills E. Comparative analysis of reproductive tract microbiomes in modern and slower-growing broiler breeder lines. Front Vet Sci 2024; 11:1386410. [PMID: 38659448 PMCID: PMC11039882 DOI: 10.3389/fvets.2024.1386410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The reproductive tract microbiome in hens is of interest because bacteria in the reproductive tract could potentially affect fertilization and egg production, as well as integrate into the forming egg and vertically transmit to progeny. Methods The reproductive tract microbiome of 37-week-old modern commercial Cobb breeding dams was compared with that of dams from a broiler Legacy line which has not undergone selection since 1986. All animals were kept together under the same management protocol from day of hatch to avoid confounders. Results In regards to reproductive abilities, Cobb dams' eggs weighed more and the magnum section of their reproductive tract was longer. In regards to microbiome composition, it was found that the reproductive tract microbiomes of the two lines had a lot in common but also that the two breeds have unique reproductive tract microbiomes. Specifically, the order Pseudomonadales was higher in the magnum of Legacy dams, while Verrucomicrobiales was lower. In the infundibulum, Lactobacillales were higher in the Legacy dams while Verrucomicrobiales, Bacteroidales, RF32 and YS2 were lower. Discussion our results show that breeding programs have modified not only the physiology of the reproductive tract but also the reproductive tract microbiome. Additional research is required to understand the implications of these changes in the reproductive tract microbiome on the chicken host.
Collapse
Affiliation(s)
- Naama Shterzer
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yara Sbehat
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Binita Poudel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nir Rothschild
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Olanrewaju Eunice Oloko
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Poultry and Aquaculture Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Shelly Druyan
- Department of Poultry and Aquaculture Science, Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Erez Mills
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Abdelhamid MK, Nekouei O, Hess M, Paudel S. Association Between Escherichia coli Load in the Gut and Body Weight Gain in Broiler Chickens: A Systematic Review and Meta-Analysis. Avian Dis 2024; 67:298-304. [PMID: 38300650 DOI: 10.1637/aviandiseases-d-23-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/01/2023] [Indexed: 02/02/2024]
Abstract
Escherichia coli is one of the first commensal bacteria to colonize the chicken gut, where it predominates at an early stage of broiler chick life. Escherichia coli can potentially cause colibacillosis in chickens, spreading to extraintestinal systemic organs, which results in high economic losses in poultry industry, as well as a potential risk to public health. Many studies conducted to investigate the effectiveness of natural products as alternatives to antibiotics and to enhance the production performance in broiler chickens have assessed E. coli load in the chicken gut, but it is still unknown how the E. coli count is linked to broiler growth performance. A systematic search of published research articles, including key terms of interest such as broiler chickens, growth performance, and E. coli count, was conducted using two main databases (PubMed and the Web of Science). A random effects metaregression model was built to evaluate the association between E. coli count and weight gain in untreated groups of broilers (negative controls) from eligible studies. Of 2108 articles in the initial screening, 60 were included in the final meta-analysis. After data extraction, records from the ileum and cecum at 21, 35, and 42 days of age were considered for the meta-analysis. The meta-analysis showed that the average E. coli count in both the ileum and cecum at 21 days of age was positively associated with the average weight gain in the studied broiler chickens, while no statistically significant associations were found at 35 and 42 days of age. In conclusion, the positive association between E. coli load and body weight gain in young broiler chickens may be attributed to the relative dominance of E. coli in the gut of this age group when the microbial population is less diverse. The dynamic association between the production performance and the load of E. coli that has dubious pathogenic potential suggests the importance of careful assessment of commensal E. coli to develop strategies to enhance production, particularly in young broiler chickens.
Collapse
Affiliation(s)
- Mohamed Kamal Abdelhamid
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria,
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region, China
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region, China
| |
Collapse
|
7
|
Duangnumsawang Y, Zentek J, Vahjen W, Tarradas J, Boroojeni FG. Impact of feed additives and host-related factors on bacterial metabolites, mucosal integrity and immune response in the ileum of broilers. Vet Res Commun 2023; 47:1861-1878. [PMID: 37160636 DOI: 10.1007/s11259-023-10135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
The present study aimed to investigate the effect of age, breed, and sex of broilers, as well as a probiotic or phytobiotic product on mucosal morphology, bacterial metabolites, and immune traits in the ileum of broilers. A total of 2,880 one-day-old male and female broiler chicks from two breeds (Ross308® and Cobb500®) were randomly assigned to 72 pens. Broilers were offered a wheat-soybean diet without (CO), or with either a probiotic (PO; 2.4 × 109 CFU/kg of Bacillus subtilis DSM32324 and DSM32325 and B. amyloliquefaciens DSM25840) or a phytobiotic (PY; grape extract, 165 ppm procyanidin and 585 ppm polyphenols of the diet) product. The trial was conducted with a 3 × 2 × 2 factorial arrangement of diet, breed, and sex in a completely randomized design (6 replicate-pens per treatment). At day 7, 21, and 35, one chicken per pen was slaughtered for collecting ileal tissue to evaluate of histomorphology and mRNA expression, as well as ileal digesta to measure bacterial metabolites. Data were subjected to ANOVA (the main factors; age, diet, breed, and sex) and Four-Way ANOVA (interactions) using GLM procedure. Overall, the concentration of acetate and total short chain fatty acids reached the peak and lactate decreased to its lowest on day 21, but their concentrations at day 7 and 35 were similar (p > 0.05). Spermine, spermidine, and ammonia decreased after day 7, while putrescine and cadaverine increased after day 21 (p < 0.05). mRNA expression of cytokines, mucin 2 (MUC2) and claudin 5 (CLDN5) was similar; increased from day 7 to 21 and decreased afterward (p < 0.05). Villus height, crypt depth and villus surface area increased with age (p < 0.05). Acidic goblet cells (GC) number and density increased after day 21 (p < 0.05). Ross broilers showed higher D-lactate concentration and IFN-γ expression, while Cobb broilers had greater IL-4, IL-6 and TNF-α expression and higher total GC number (p < 0.05). Female displayed higher villus height and GC number and density (mixed and total GC) than male (p < 0.05). The effect of dietary treatment was not found on any investigated variables (p > 0.05). In conclusion, aging of broilers affected ileal histomorphology, cytokine expression, and barrier integrity, as well as bacterial activity. These observed impacts could be attributed to host-microbiota interaction and the direct effects of bacterial metabolites on intestinal cells and immune system.
Collapse
Affiliation(s)
- Yada Duangnumsawang
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Faculty of Veterinary Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joan Tarradas
- ‡Institute for Food and Agricultural Research and Technology IRTA, Constantí, Spain
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Liu Y, Feng Y, Yang X, Lv Z, Li P, Zhang M, Wei F, Jin X, Hu Y, Guo Y, Liu D. Mining chicken ileal microbiota for immunomodulatory microorganisms. THE ISME JOURNAL 2023; 17:758-774. [PMID: 36849630 PMCID: PMC10119185 DOI: 10.1038/s41396-023-01387-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system-microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
9
|
Shterzer N, Sbehat Y, Poudel B, Rothschild N, Oloko OE, Headrick J, Petersen E, Druyan S, Mills E. Differences in gut bacterial community composition between modern and slower-growing broiler breeder lines: Implications of growth selection on microbiome composition. Front Physiol 2023; 14:1151151. [PMID: 37025381 PMCID: PMC10070808 DOI: 10.3389/fphys.2023.1151151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023] Open
Abstract
In the last century broiler chicken lines have undergone an extensive breeding regime aimed primarily at growth and high meat yield. It is not known if breeding has also resulted in a change to the broiler breeder's associated gut microbiota. Here we compared the gut microbiota of 37-week-old commercial Cobb breeding dams with dams from a broiler Legacy line which has not undergone selection since 1986. The dams from both lines were kept together in the same shed under the same management protocol from day of hatch to avoid additional confounders. We chose this age to allow significant bacterial exchange, thus avoiding exposure dependent artifacts and so that we could compare dams at the same developmental state of adulthood and peak laying performance. Significant differences in the composition of the cecum bacterial communities were found. Bacteria of the genus Akkermansia, implicated in mucin degradation and associated with host metabolic health, accounted for 4.98% ± 5.04% of the Cobb cecum community, but were mostly absent from the ceca of the Legacy line dams. Inversely, Legacy dams had higher levels of Clostridiales, Lactobacillales and Aeromonadales. These results show that breeding has resulted in a change in the gut microbiota composition, likely by changing the physiological conditions in the mucosa. It remains unclear if changes in gut microbiota composition are a part of the mechanism affecting growth or are a secondary result of other physiological changes accelerating growth. Therefore, the identification of these changes opens the door to further targeted research.
Collapse
Affiliation(s)
- Naama Shterzer
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yara Sbehat
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Binita Poudel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nir Rothschild
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Olanrewaju Eunice Oloko
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon, Israel
| | - Joseph Headrick
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Erik Petersen
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Shelly Druyan
- Agricultural Research Organization, Volcani Center, Department of Poultry and Aquaculture Science, Rishon LeTsiyon, Israel
| | - Erez Mills
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Intestinal permeability, microbiota composition and expression of genes related to intestinal barrier function of broiler chickens fed different methionine sources supplemented at varying concentrations. Poult Sci 2023; 102:102656. [PMID: 37043958 PMCID: PMC10140141 DOI: 10.1016/j.psj.2023.102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Intestinal health of broiler chickens is influenced by the concentration of dietary amino acids but data are limited on the role of dietary methionine (Met). Two experiments were conducted to investigate the implications of different Met sources for performance, gut barrier function, and intestinal microbiota in broilers. In the first experiment, Ross 308 off-sex birds (n = 900) were assigned to 10 dietary treatments each replicated 9 times in a 35-day study. Three sources of Met included DL-Met, L-Met, or Met hydroxy analog free acid (MHA-FA), each supplemented at suboptimal (SUB) at 80%, adequate (ADE) at 100% and over-requirement (OVR) at 120% of the specifications against a deficient (DEF) diet with no added Met. The second experiment used 96 Ross 308 broilers in a 2 × 4 factorial arrangement. Four diets included 3 sources of Met supplemented at ADE level plus the DEF treatment. On d 17, 19, and 23, half of the birds in each dietary treatment were injected with dexamethasone (DEX) to induce leaky gut. In the first experiment, without an interaction, from d 0 to 35, birds fed DL-Met and L-Met performed similarly for BWG, feed intake, and FCR but birds fed MHA-FA had less feed intake and BWG (P < 0.05). At d 23, mRNA expression of selected tight junction proteins was not affected except for claudin 2. Ileal microbiota of DEF treatment was different from DL-MET or L-MET supplemented birds (P < 0.05). However, microbiota of MHA-FA treatments was only different at OVR from the DEF group. The abundance of Peptostreptococcus increased in DEF treatment whereas Lactobacillus decreased. In the second experiment, DEX independently increased (P < 0.001) intestinal permeability assayed by fluorescein isothiocyanate dextran, but diet had no effect. DL-Met and L-Met fed birds had a higher level of claudin 3 only in DEX-injected birds (P < 0.05). In conclusion, unlike the level of supplementation, DL-Met, L-Met, and MHA-FA were largely similar in their limited impacts on intestinal barrier function and gut microbiota in broilers.
Collapse
|
11
|
Pottenger S, Watts A, Wedley A, Jopson S, Darby AC, Wigley P. Timing and delivery route effects of cecal microbiome transplants on Salmonella Typhimurium infections in chickens: potential for in-hatchery delivery of microbial interventions. Anim Microbiome 2023; 5:11. [PMID: 36788638 PMCID: PMC9926694 DOI: 10.1186/s42523-023-00232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Exposure to microbes early in life has long-lasting effects on microbial community structure and function of the microbiome. However, in commercial poultry settings chicks are reared as a single-age cohort with no exposure to adult birds which can have profound effects on microbiota development and subsequent pathogen challenge. Microbiota manipulation is a proven and promising strategy to help reduce pathogen load and transmission within broiler flocks. However, administration of microbiota transplant products in a hatchery setting may prove challenging. Effective administration strategies are dependent on key factors, such as; the age of chicks receiving interventions and mode of delivery. This study aimed to assess these two aspects to provide supporting evidence towards microbiome manipulation strategies for use in commercial hatcheries. RESULTS Manipulation of the microbiota between 4 and 72 h of hatch markedly reduced faecal shedding and colonisation with the foodborne pathogen Salmonella enterica serovar Typhimurium (ST4/74). Administration of transplant material via spray or gel drop delivery systems had minimal effect on the protection conferred with fewer birds in transplant groups shown to shed ST4/74 in the faeces compared to PBS-gavaged control birds. Analysis of the microbiome following transplantation demonstrated that all transplant groups had higher diversity and species richness than non-transplant groups during the first week of life and the early stages of infection with ST47/4.The relative abundance of the bacterium Faecalibacterium prausnitzii was significantly higher in CMT groups compared to PBS controls. The presence of F. prausnitzii was also shown to increase in PBS-challenged birds compared to unchallenged birds potentially indicating a role of this bacterium in limiting Salmonella infections. CONCLUSIONS This study demonstrated that administration of microbiome transplants, using methods that would align with hatchery practices, effectively reduced colonisation and shedding of Salmonella in chickens. Age of chicks at microbiome administration had limited effect on the diversity and composition of the microbiome and conferred protection against Salmonella infections. Traditional hatchery delivery systems, such as spray or gel-drop, are sufficient to transfer donor material, alter the microbiome and confer protection against Salmonella. This study helps highlight the opportunity for use of microbiome modification methods within the hatchery.
Collapse
Affiliation(s)
- Sian Pottenger
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Amyleigh Watts
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Amy Wedley
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Sue Jopson
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- grid.10025.360000 0004 1936 8470Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Paul Wigley
- grid.10025.360000 0004 1936 8470Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK ,grid.5337.20000 0004 1936 7603School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Jia S, Zhang J, Li X, He Y, Yu T, Zhao C, Song C. Intestinal Microflora Characteristics of Antheraea pernyi (Lepidoptera: Saturniidae) Larvae With Vomit Disease. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1859-1868. [PMID: 36124625 DOI: 10.1093/jee/toac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Antheraea pernyi Guérin-Méneville (Lepidoptera: Saturniidae) is of high economic value as a source of silk, food, and bioactive substances with medicinal properties. A. pernyi larvae are prone to A. pernyi vomit disease (AVD), which results in substantial economic losses during cultivation; however, the relationship between AVD and A. pernyi gut microbiota remains unclear. Here, we investigated the bacterial community in the midgut and feces of A. pernyi larvae with and without AVD using 16S rRNA gene sequencing with Illumina MiSeq technology. Compared with healthy larvae, intestinal bacterial diversity and community richness increased and decreased in larvae with mild and severe AVD, respectively. In addition, the proportion of gut Enterobacter Hormaeche and Edwards(Enterobacteriales: Enterobacteriaceae) and Enterococcus Thiercelin and Jouhaud (Lactobacillales: Enterococcaceae) was higher and lower, respectively, in larvae with mild AVD than those in healthy larvae. A. pernyi vomit disease infection significantly increased the genera with abundance <1%. In the gut of larvae with severe AVD, the proportion of Turicibacter Bosshard et al. (Erysipelotrichales: Turicibacteraceae) increased significantly to 81.53-99.92%, whereas that of Enterobacter decreased compared with healthy larvae. However, the diversity of fecal bacteria was similar between healthy larvae and those with mild AVD. Overall, the findings demonstrate that intestinal microflora in A. pernyi larvae are altered by AVD infection and may cause secondary bacterial infection. This is the first report of the presence of Turicibacter in the intestinal tract of lepidopterans.
Collapse
Affiliation(s)
- Shu Jia
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Juntao Zhang
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Xisheng Li
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Yingzi He
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Tinghong Yu
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Chong Zhao
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Ce Song
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| |
Collapse
|
13
|
A new monocomponent xylanase improves performance, ileal digestibility of energy and nutrients, intestinal morphology, and intestinal microbiota in young broilers. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Zou A, Nadeau K, Xiong X, Wang PW, Copeland JK, Lee JY, Pierre JS, Ty M, Taj B, Brumell JH, Guttman DS, Sharif S, Korver D, Parkinson J. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. MICROBIOME 2022; 10:127. [PMID: 35965349 PMCID: PMC9377095 DOI: 10.1186/s40168-022-01319-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The emergence of antimicrobial resistance is a major threat to global health and has placed pressure on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut microbiome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, and/or timepoint, resulting in an inconsistent view of their impact on community composition. METHODS In this study, we perform a systematic investigation of both the composition and function of the chicken gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were performed through metatranscriptomics analyses and metabolomics. RESULTS Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial growth or produce metabolites that impact the host. CONCLUSIONS As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation feed additives targeting gut health and poultry production. Video Abstract.
Collapse
Affiliation(s)
- Angela Zou
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Kerry Nadeau
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - Julia K. Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - James St. Pierre
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Maxine Ty
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Billy Taj
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - John H. Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- SickKids IBD Centre, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON Canada
| | - Doug Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
15
|
Hemetsberger F, Zwirzitz B, Yacoubi N, Kneifel W, Schedle K, Domig KJ. Effect of Two Soybean Varieties Treated with Different Heat Intensities on Ileal and Caecal Microbiota in Broiler Chickens. Animals (Basel) 2022; 12:ani12091109. [PMID: 35565536 PMCID: PMC9103914 DOI: 10.3390/ani12091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Soybeans are an essential part of today’s poultry nutrition diets because of their high protein content and quality. To ensure optimum digestibility in monogastric animals, soybeans need to be thermally processed. As required heat intensities depend on individual soybean properties, the emergence of highly heterogenic soybean batches is a challenge for adequate processing conditions. Molecular changes occurring during heat treatment can alter the microbial communities colonizing the animals’ guts. Gut microbiota is of great importance for both its host animal’s performance and health. To investigate the effect of heat treatment and soybean variety on the chickens’ microbiota, two soybean varieties were selected, treated at two different heat intensities and subjected to a feeding trial. DNA was then extracted and sequenced to identify different bacterial populations in the digesta of certain gut sections. Results showed that both the soybean variety and the applied heat treatment affected the abundance of certain bacterial species in the gut of chickens, but no effect on the taxonomy level of family or genus appeared. This underlines the sensitivity and reactivity of the highly complex microbial community to apparently small dietary differences. Abstract Soybean products are of high importance for the protein supply of poultry. Heat treatment of soybeans is essential to ensure optimal digestibility because of intrinsic antinutritive factors typical for this feed category. However, excessive treatment promotes the Maillard reaction and reduces protein digestibility. Furthermore, Europe’s efforts are to decrease dependence on imports of soybean products and enlarge local production. This process will include an increase in the variability of soybean batches, posing great challenges to adequate processing conditions. Intrinsic soybean properties plus heat treatment intensity might be able to modulate the gut microbiota, which is of crucial importance for an animal’s health and performance. To assess the influence of heat treatment and soybean variety on gut microbiota, 2 soybean cakes from 2 varieties were processed at 110 °C or 120 °C and subsequently fed to 336 one-day-old broiler chickens. After 36 days, the animals were slaughtered, and the digesta of the ileum and caecum was collected. Next, 16S rRNA amplicon sequencing of the extracted DNA revealed a high discrepancy between gut sections, but there were no differences between male and female birds. Significant differences attributed to the different soybean varieties and heat intensity were detected for certain bacterial taxa. However, no effect on specific families or genera appeared. In conclusion, the results indicated the potential of processing conditions and soybean variety as microbiota-modulating factors.
Collapse
Affiliation(s)
- Florian Hemetsberger
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; (F.H.); (B.Z.); (W.K.)
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria;
| | - Benjamin Zwirzitz
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; (F.H.); (B.Z.); (W.K.)
| | | | - Wolfgang Kneifel
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; (F.H.); (B.Z.); (W.K.)
| | - Karl Schedle
- Department of Agrobiotechnology, Institute of Animal Nutrition, Livestock Products and Nutrition Physiology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190 Vienna, Austria;
| | - Konrad J. Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; (F.H.); (B.Z.); (W.K.)
- Correspondence:
| |
Collapse
|
16
|
Such N, Farkas V, Csitári G, Pál L, Márton A, Menyhárt L, Dublecz K. Relative Effects of Dietary Administration of a Competitive Exclusion Culture and a Synbiotic Product, Age and Sampling Site on Intestinal Microbiota Maturation in Broiler Chickens. Vet Sci 2021; 8:vetsci8090187. [PMID: 34564581 PMCID: PMC8472864 DOI: 10.3390/vetsci8090187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
In this research, the effects of early post-hatch inoculation of a competitive exclusion product (Br) and the continuous feeding of a synbiotic supplement (Sy) containing probiotic bacteria, yeast, and inulin on the production traits and composition of ileal chymus (IC), ileal mucosa (IM), and caecal chymus (CC) microbiota of broiler chickens were evaluated. The dietary treatments had no significant effects on the pattern of intestinal microbiota or production traits. The digestive tract bacteriota composition was affected mostly by the sampling place and age of birds. The dominant family of IC was Lactobacillaceae, without change with the age. The abundance of the two other major families, Enterococcaceae and Lachnospiraceae decreased with the age of birds. In the IM, Clostridiaceae was the main family in the first three weeks. Its ratio decreased later and Lactobacillaceae became the dominant family. In the CC, Ruminococcaceae and Lachnospiraceae were the main families with decreasing tendency in the age. In IC, Br treatment decreased the abundance of genus Lactobacillus, and both Br and Sy increased the ratio of Enterococcus at day 7. In all gut segments, a negative correlation was found between the IBD antibody titer levels and the ratio of genus Leuconostoc in the first three weeks, and a positive correlation was found in the case of Bifidobacterium, Rombutsia, and Turicibacter between day 21 and 40.
Collapse
Affiliation(s)
- Nikoletta Such
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Valéria Farkas
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Gábor Csitári
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - László Pál
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - Aliz Márton
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
| | - László Menyhárt
- Institute of Technology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
| | - Károly Dublecz
- Institute of Physiology and Nutrition, Department of Animal Nutrition and Nutritional Physiology, Georgikon Campus, Deák Ferenc Street 16, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (N.S.); (V.F.); (G.C.); (L.P.); (A.M.)
- Correspondence: ; Tel.: +36-30-6418597
| |
Collapse
|
17
|
Effects of Vitamin B2 Supplementation in Broilers Microbiota and Metabolome. Microorganisms 2020; 8:microorganisms8081134. [PMID: 32727134 PMCID: PMC7464963 DOI: 10.3390/microorganisms8081134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/04/2023] Open
Abstract
The study of the microbiome in broiler chickens holds great promise for the development of strategies for health maintenance and performance improvement. Nutritional strategies aimed at modulating the microbiota-host relationship can improve chickens' immunological status and metabolic fitness. Here, we present the results of a pilot trial aimed at analyzing the effects of a nutritional strategy involving vitamin B2 supplementation on the ileum, caeca and litter microbiota of Ross 308 broilers, as well as on the metabolic profile of the caecal content. Three groups of chickens were administered control diets and diets supplemented with two different dosages of vitamin B2. Ileum, caeca, and litter samples were obtained from subgroups of birds at three time points along the productive cycle. Sequencing of the 16S rRNA V3-V4 region and NMR metabolomics were used to explore microbiota composition and the concentration of metabolites of interest, including short-chain fatty acids. Vitamin B2 supplementation significantly modulated caeca microbiota, with the highest dosage being more effective in increasing the abundance of health-promoting bacterial groups, including Bifidobacterium, resulting in boosted production of butyrate, a well-known health-promoting metabolite, in the caeca environment.
Collapse
|
18
|
Vollmar S, Wellmann R, Borda-Molina D, Rodehutscord M, Camarinha-Silva A, Bennewitz J. The Gut Microbial Architecture of Efficiency Traits in the Domestic Poultry Model Species Japanese Quail ( Coturnix japonica) Assessed by Mixed Linear Models. G3 (BETHESDA, MD.) 2020; 10:2553-2562. [PMID: 32471941 PMCID: PMC7341145 DOI: 10.1534/g3.120.401424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
It is well known that mammals and avian gut microbiota compositions are shaped by the host genomes and affect quantitative traits. The microbial architecture describes the impact of the microbiota composition on quantitative trait variation and the number and effect distribution of microbiota features. In the present study the gut microbial architecture of feed-related traits phosphorus and calcium utilization, daily gain, feed intake and feed per gain ratio in the domestic poultry model species Japanese quail were assessed by mixed linear models. The ileum microbiota composition was characterized by 16S rRNA amplicon sequencing techniques of growing individuals. The microbiability of the traits was on a similar level as the narrow sense heritability and was highly significant except for calcium utilization. The animal microbial correlation of the traits was substantial. Microbiome-wide association analyses revealed several traits associated and highly significant microbiota features, both on the bacteria genera as well as on the operational taxonomic unit level. Most features were significant for more than one trait, which explained the high microbial correlations. It can be concluded that the traits are polymicrobial determined with some microbiota features with larger effects and many with small effects. The results are important for the development of hologenomic selection schemes for feed-related traits in avian breeding programs that are targeting the host genome and the metagenome simultaneously.
Collapse
Affiliation(s)
- Solveig Vollmar
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | | | | | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
19
|
Borda-Molina D, Roth C, Hérnandez-Arriaga A, Rissi D, Vollmar S, Rodehutscord M, Bennewitz J, Camarinha-Silva A. Effects on the Ileal Microbiota of Phosphorus and Calcium Utilization, Bird Performance, and Gender in Japanese Quail. Animals (Basel) 2020; 10:ani10050885. [PMID: 32438715 PMCID: PMC7278395 DOI: 10.3390/ani10050885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, we aimed to investigate the ileum digesta of a large cohort of Japanese quail fed the same diet, with similar environmental conditions. We also address how P utilization (PU), Ca utilization (CaU), and bird performance (feed intake (FI), feed conversion (FC), and body weight gain (BWG)) modify intestinal microbiota of male and female quail. Despite the great number of samples analyzed (760), a core microbiome was composed of five bacteria. The Unc. Lactobacillus, Unc. Clostridaceae 1, Clostridium sensu stricto, Escherichia coli, and Streptococcus alactolyticus were detected in all samples and contributed to more than 70% of the total community. Depending on the bird predisposition for PU, CaU, FI, BWG, and FC, those species were present in higher or lower abundances. There was a significant gender effect on the ileal microbial community. While females had higher abundances of Lactobacillus, males were more colonized by Streptococcus alactolyticus. The entire cohort was highly colonized by Escherichia coli (8%-15%), an enteropathogenic bacteria. It remains unclear, if microbiota composition followed the mechanisms that caused different PU, CaU, FI, FC, and BWG or if the change in microbiota composition and function caused the differences in PU, CaU, and performance traits.
Collapse
|