1
|
Schaefer EAF, Chu S, Wylie KM, Wylie TN, Griffith OL, Pearce JW, Johnson GC, Bryan JN, Flesner BK. Metagenomic Analysis of DNA Viruses with Targeted Sequence Capture of Canine Lobular Orbital Adenomas and Normal Conjunctiva. Microorganisms 2023; 11:1163. [PMID: 37317137 DOI: 10.3390/microorganisms11051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
Our study aims are: (1) to evaluate phenotypically normal canine conjunctival and orbital tissue and tissue from canine lobular orbital adenomas (CLOAs) for the presence of viral genomic material and (2) phylogenetically classify detected DNA viruses to determine if a DNA virus is associated with CLOAs. A total of 31 formalin fixed paraffin embedded CLOA tissue samples, 4 papillomas or sarcoid, and 10 fresh clinically normal conjunctival tissues were included in this study. Genomic DNA was isolated from all samples and sequencing libraries were prepared. The libraries were molecularly indexed and pooled and viral DNA was enriched via targeted sequence capture utilizing ViroCap. The libraries were sequenced on the Illumina HiSeq platform and compared to known viral DNA reference genomes to identify viral DNA. Carnivore parvovirus was identified in 6.4% and 20% of CLOA tissue and normal conjunctival samples, respectively. This study showed that conjunctival tissue from healthy dogs and CLOAs uncommonly harbor DNA viruses, and no DNA virus was associated with these tumors. Further studies are needed to evaluate the etiologic cause of CLOAs.
Collapse
Affiliation(s)
- Elizabeth A F Schaefer
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Shirley Chu
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kristine M Wylie
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Todd N Wylie
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Obi L Griffith
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Jacqueline W Pearce
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Gayle C Johnson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Brian K Flesner
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|