1
|
Kosaka AH, Huang CY, Lu ZY, Hsing HZ, Choonnasard A, Ringo RS, Chuang KP, Saito A. Divergent Effects of Circoviridae Capsid Proteins on Type I Interferon Signaling. Pathogens 2025; 14:68. [PMID: 39861029 PMCID: PMC11768430 DOI: 10.3390/pathogens14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/17/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Viruses in the Circoviridae family can infect mammals and birds. Porcine circovirus type 2 (PCV2) significantly affects the livestock industry by causing porcine circovirus-associated diseases, such as postweaning multisystem wasting syndrome, respiratory disease complex, and dermatitis nephropathy syndrome. Additionally, beak and feather disease virus in parrots, canine circovirus in dogs, and columbid circovirus (pigeon circovirus) in racing pigeons induce immunosuppression, followed by secondary infections in these hosts. Although the PCV2 capsid protein has been demonstrated to inhibit type I interferon (IFN) signaling, the molecular mechanisms of Circoviridae-induced immunosuppression are largely unknown. In this study, we examined whether these functions are conserved across Circoviridae capsid proteins. Our results illustrated that although the nuclear localization of capsid proteins is conserved, their effects on IFN-β signaling vary by species, revealing the diverse roles of Circoviridae capsid proteins in modulating immune responses.
Collapse
Affiliation(s)
- Anon H. Kosaka
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
| | - Chen-Yu Huang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Zih-Ying Lu
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Hua-Zhen Hsing
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Amonrat Choonnasard
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Rissar Siringo Ringo
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kuo Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (C.-Y.H.); (Z.-Y.L.); (H.-Z.H.); (K.P.C.)
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (A.H.K.); (A.C.); (R.S.R.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
2
|
Gao YY, Wang Q, Li HW, Zhang S, Zhao J, Bao D, Zhao H, Wang K, Hu GX, Gao FS. Genomic composition and pathomechanisms of porcine circoviruses: A review. Virulence 2024; 15:2439524. [PMID: 39662970 PMCID: PMC11639455 DOI: 10.1080/21505594.2024.2439524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Porcine circovirus (PCV) belongs to the genus Circovirus within the family Circoviridae; it has the smallest genome and a complicated classification system comprising PCV1, PCV2, PCV3, and PCV4. Most types of these viruses can cause animals to develop serious diseases; in pigs in particular, it may manifest as postweaning multisystemic wasting syndrome (PMWS), reproductive failure, porcine dermatitis and nephropathy syndrome (PDNS), congenital tremors (CTs), proliferative and necrotizing pneumonia (PNP), lymphoid injury, and immunosuppression. Different types of PCVs cause different types of diseases and sometimes feature no pathogenicity; these various PCV types are associated with different pathomechanisms in animals. In this review, the genomic composition and systemic pathomechanisms of porcine circoviruses are introduced, and future research prospects are discussed.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Qian Wang
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Han-Wen Li
- College of Life Sciences, Nankai University, Tianjing, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Jian Zhao
- ChangChun Sino Biotechnology CO. LTD, Changchun, Jilin, China
| | - Di Bao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Feng-Shan Gao
- College of Life and Health, Dalian University, Dalian, China
- The Dalian Animal Virus Antigen Epitope Screening and Protein Engineering Drug Developing Key Laboratory, Dalian, China
| |
Collapse
|
3
|
Hernández J, Henao-Díaz A, Reséndiz-Sandoval M, Cota-Valdez A, Mata-Haro V, Gimenez-Lirola LG. Dynamics of PCV2 and PCV3 in the Serum and Oral Fluids of Pigs After PCV2 Vaccination in a Commercial Farm. Vaccines (Basel) 2024; 12:1318. [PMID: 39771980 PMCID: PMC11680165 DOI: 10.3390/vaccines12121318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES This study investigated the dynamics of porcine circovirus type 2 (PCV2) and PCV3 on a commercial farm following PCV2 vaccination. METHODS Serum samples from 35 pigs, starting at 3 weeks of age, were collected weekly until 21 weeks of age. Oral fluids from six pens of pigs of the same age were also analyzed. Viral DNA was assessed in pooled sera and individual oral fluid samples, while antibodies (IgG and IgA) were measured in the serum and oral fluids. Productive parameters, including weekly mortality and cumulative mortality, were evaluated. RESULTS The results revealed that PCV2 and PCV3 co-infection was detected in pigs at 8 weeks of age, with PCV3 being detected in oral fluids two weeks earlier. PCV3 DNA was detected in oral fluids at 4 weeks of age. PCV2 IgG antibodies in the serum increased gradually after vaccination, peaking at 7 weeks of age, then declined and stabilized until 21 weeks of age. PCV3 IgG antibodies fluctuated early but were uniformly positive after 13 weeks of age. In oral fluids, PCV2 IgG and IgA antibodies showed a strong response only at 3 and 23 weeks of age. In contrast, a strong and consistent IgG response was observed in oral fluids in the absence of PCV2 and PCV3 co-infection of pigs at 3 to 11 weeks of age. The farm's productive parameters remained stable throughout the study. CONCLUSIONS These findings suggest that PCV2 and PCV3 co-infection, along with high PCV3 detection levels in serum and oral fluids, may have an impact on the efficacy of PCV2 vaccination.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, SON, Mexico;
| | - Alexanda Henao-Díaz
- Grupo Bachoco, Unidad de Negocios Cerdo, Celaya 38000, GTO, Mexico; (A.H.-D.); (A.C.-V.)
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, SON, Mexico;
| | - Angel Cota-Valdez
- Grupo Bachoco, Unidad de Negocios Cerdo, Celaya 38000, GTO, Mexico; (A.H.-D.); (A.C.-V.)
| | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, SON, Mexico;
| | - Luis G. Gimenez-Lirola
- Department of Veterinary Diagnosis and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Wang J, Lei B, Zhang W, Li L, Ji J, Liu M, Zhao K, Yuan W. Preparation of Monoclonal Antibodies against the Capsid Protein and Development of an Epitope-Blocking Enzyme-Linked Immunosorbent Assay for Detection of the Antibody against Porcine Circovirus 3. Animals (Basel) 2024; 14:235. [PMID: 38254404 PMCID: PMC10812811 DOI: 10.3390/ani14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine circovirus type 3 (PCV3) is endemic in swine worldwide and causes reproductive disorders, dermatitis and nephrotic syndrome, and multi-organ inflammation. Currently, there is a growing need for rapid and accurate diagnostic methods in disease monitoring. In this study, four monoclonal antibodies (mAbs) against PCV3 capsid proteins were prepared (mAbs 2F6, 2G8, 6E2, and 7E3). MAb 7E3, which had the highest binding affinity for the Cap protein, was chosen for further investigation. A novel B cell epitope 110DLDGAW115 was identified using mAb 7E3. An epitope-blocking (EB) enzyme-linked immunosorbent assay (ELISA) was successfully developed using horseradish-peroxidase-labeled mAb 7E3 to detect PCV3 antibodies in porcine sera. Moreover, the EB-ELISA showed no specific reaction with other porcine disease sera, and the cut-off value was defined as 35%. Compared with the commercial ELISA, the percentage agreement was 95.59%. Overall, we have developed a novel EB-ELISA method that accurately and conveniently detects PCV3 in serum, making it a valuable tool for the clinical detection of PCV3 infection.
Collapse
Affiliation(s)
- Junli Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Lijie Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jiashuang Ji
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Mandi Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071000, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding 071000, China
- North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding 071000, China
| |
Collapse
|
5
|
Chen D, Zhang L, Xu S. Pathogenicity and immune modulation of porcine circovirus 3. Front Vet Sci 2023; 10:1280177. [PMID: 38089706 PMCID: PMC10711280 DOI: 10.3389/fvets.2023.1280177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/25/2023] [Indexed: 01/05/2025] Open
Abstract
Porcine circoviruses (PCVs) are members of the genus Circovirus of the family Circoviridae, and four species of PCVs have been discovered and named PCV1-PCV4, respectively. With the first report of PCV3 in America in 2016, the pathogenic variant was found to be associated with various clinical features, called porcine circovirus associated disease (PCVAD), including multisystemic inflammation, porcine dermatitis and nephropathy syndrome (PDNS), reproductive disorders, respiratory or digestive disorders. Increasing experimental data have shown that PCV3 is widespread around the world, but the failure of virus isolation and propagation has put obstacles in the way of PCV3 research. Moreover, a large number of reports demonstrate that PCV3 usually co-infects with other pathogens in pigs. Thus, whether PCV3 alone causes clinical manifestations needs to be fully discussed. In addition, the host cell immune response was activated during PCV3 infection, and PCV3-encoded proteins may regulate immune responses to facilitate its replication. An in-depth understanding of PCV3 pathogenesis and immune regulation strategies is critical for PCVAD prevention. In this review, the advances in pathogenicity and innate immune modulation of PCV3 were summarized, which could deepen the understanding of this virus and PCV3-related diseases.
Collapse
Affiliation(s)
- Dengjin Chen
- Key Laboratory of Veterinary Biological Products and Chemical Drugs, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Products and Chemical Drugs, Ministry of Agriculture and Rural Affairs, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd., Beijing, China
| | - Shengkui Xu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
6
|
Li T, Li X, Wang X, Chen X, Zhao G, Liu C, Bao M, Song J, Li J, Huang L, Rong J, Tian K, Deng J, Zhu J, Cai X, Bu Z, Zheng J, Weng C. African swine fever virus pS273R antagonizes stress granule formation by cleaving the nucleating protein G3BP1 to facilitate viral replication. J Biol Chem 2023; 299:104844. [PMID: 37209818 PMCID: PMC10404608 DOI: 10.1016/j.jbc.2023.104844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.
Collapse
Affiliation(s)
- Tingting Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xuewen Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China; College of Life Sciences, Yangtze University, Jingzhou, China
| | - Xiao Wang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xin Chen
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Gaihong Zhao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Chuanxia Liu
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Miaofei Bao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jie Song
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jiangnan Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Li Huang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jun Rong
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Junhua Deng
- Luoyang Putai Biotechnology Co, Ltd, Luoyang, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xuehui Cai
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Zheng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| | - Changjiang Weng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| |
Collapse
|
7
|
Zhang X, Zheng C, Lv Z, Xue S, Chen Y, Liu Y, Huang X, Luo G, Yang X, Dai A. Genetic and epidemic characteristics of porcine parvovirus 7 in the Fujian and Guangdong regions of southern China. Front Vet Sci 2022; 9:949764. [PMID: 36061123 PMCID: PMC9428481 DOI: 10.3389/fvets.2022.949764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine parvovirus (PPV) is the primary cause of reproductive disorders in pigs. The porcine parvovirus 7 (PPV7) subtype was first identified in the United States in 2016. In this study, PPV7 was detected in different porcine samples, including serum, feces, saliva, and milk, from 69 pig farms in the Fujian and Guangdong regions of South China, and its coinfection with porcine circovirus 2 (PCV2), porcine circovirus 3 (PCV3), and porcine reproductive and respiratory syndrome virus (PRRSV) was determined. Whole-genome sequencing, phylogenetic analysis, and recombination analysis were performed on seven isolates, with each selected isolate originating from a different farm. There was a high rate of PPV7 positivity in blood, stool, and saliva but PPV7 DNA was absent from breast milk. The findings also showed that PPV7-positive samples had a high rate of coinfection with PCV2, PCV3, and PRRSV. Real-time PCR was used to determine the viral copy numbers of PCV2, PCV3, PRRSV, and PPV7 in serum samples and to assess whether PPV7 affected PCV2, PCV3, and PRRSV viral loads. Phylogenetic analysis showed that PPV7e and PPV7f were the most prevalent and widespread subtypes in the Fujian and Guangdong regions, respectively. While the PPV7a, PPV7b, PPV7c, and PPV7f subtypes were most prevalent in Fujian Province, PPV7a-e subtypes were prevalent in Guangdong, indicating that PPV7 has rich genetic diversity in these regions. A putative recombinant strain, 21FJ09, was identified using SimPlot and the Recombination Detection Program 4 software.
Collapse
Affiliation(s)
- Xinjie Zhang
- College of Life Sciences, Longyan University, Longyan, China
| | - Canyang Zheng
- College of Life Sciences, Longyan University, Longyan, China
| | - Zixin Lv
- College of Life Sciences, Longyan University, Longyan, China
| | - Shaohua Xue
- College of Life Sciences, Longyan University, Longyan, China
| | - Yuxuan Chen
- College of Life Sciences, Longyan University, Longyan, China
| | - Yanru Liu
- College of Life Sciences, Longyan University, Longyan, China
| | - Xirong Huang
- College of Life Sciences, Longyan University, Longyan, China
| | - Guoqing Luo
- College of Life Sciences, Longyan University, Longyan, China
| | - Xiaoyan Yang
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Engineering Research Center for Swine Disease Control and Prevention, Longyan, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
- *Correspondence: Xiaoyan Yang
| | - Ailing Dai
- College of Life Sciences, Longyan University, Longyan, China
- Fujian Engineering Research Center for Swine Disease Control and Prevention, Longyan, China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
- Ailing Dai
| |
Collapse
|
8
|
Advances in Crosstalk between Porcine Circoviruses and Host. Viruses 2022; 14:v14071419. [PMID: 35891399 PMCID: PMC9315664 DOI: 10.3390/v14071419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Porcine circoviruses (PCVs), including PCV1 to PCV4, are non-enveloped DNA viruses with a diameter of about 20 nm, belonging to the genus Circovirus in the family Circoviridae. PCV2 is an important causative agent of porcine circovirus disease or porcine circovirus-associated disease (PCVD/PCVAD), which is highly prevalent in pigs and seriously affects the swine industry globally. Furthermore, PCV2 mainly causes subclinical symptoms and immunosuppression, and PCV3 and PCV4 were detected in healthy pigs, sick pigs, and other animals. Although the pathogenicity of PCV3 and PCV4 in the field is still controversial, the infection rates of PCV3 and PCV4 in pigs are increasing. Moreover, PCV3 and PCV4 rescued from infected clones were pathogenic in vivo. It is worth noting that the interaction between virus and host is crucial to the infection and pathogenicity of the virus. This review discusses the latest research progress on the molecular mechanism of PCVs–host interaction, which may provide a scientific basis for disease prevention and control.
Collapse
|
9
|
Ge Y, Jin J, Li J, Ye M, Jin X. The roles of G3BP1 in human diseases (review). Gene X 2022; 821:146294. [PMID: 35176431 DOI: 10.1016/j.gene.2022.146294] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022] Open
Abstract
Ras-GTPase-activating protein binding protein 1 (G3BP1) is a multifunctional binding protein involved in a variety of biological functions, including cell proliferation, metastasis, apoptosis, differentiation and RNA metabolism. It has been revealed that G3BP1, as an antiviral factor, can interact with viral proteins and regulate the assembly of stress granules (SGs), which can inhibit viral replication. Furthermore, several viruses have the ability to hijack G3BP1 as a cofactor, recruiting translation initiation factors to promote viral proliferation. However, many functions of G3BP1 are associated with other diseases. In various cancers, G3BP1 is a cancer-promoting factor, which can promote the proliferation, invasion and metastasis of cancer cells. Moreover, compared with normal tissues, G3BP1 expression is higher in tumor tissues, indicating that it can be used as an indicator for cancer diagnosis. In this review, the structure of G3BP1 and the regulation of G3BP1 in multiple dimensions are described. In addition, the effects and potential mechanisms of G3BP1 on various carcinomas, viral infections, nervous system diseases and cardiovascular diseases are elucidated, which may provide a direction for clinical applications of G3BP1 in the future.
Collapse
Affiliation(s)
- Yidong Ge
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jiabei Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
10
|
Five years of porcine circovirus 3: what have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res 2022; 314:198764. [PMID: 35367483 DOI: 10.1016/j.virusres.2022.198764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
|
11
|
Yao L, Cheng Y, Wu H, Ghonaim AH, Fan S, Li W, He Q. The construction and immunogenicity analyses of a recombinant pseudorabies virus with porcine circovirus type 3 capsid protein co-expression. Vet Microbiol 2021; 264:109283. [PMID: 34902738 DOI: 10.1016/j.vetmic.2021.109283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/27/2022]
Abstract
Porcine circovirus-associated diseases (PCVADs) and pseudorabies (PR) are highly contagious and economically significant diseases of swine in China. Porcine circovirus type 3 (PCV3) is an emerging swine pathogen of PCVAD. Currently, no PCV3 vaccine is commercially available, and the epidemic caused by it is still spreading worldwide. In this study, we used the PRV variant strain HNX as the parental virus to construct recombinant PRV with TK/gE gene deletion and capsid (Cap) protein co-expression, named HNX-ΔTK/ΔgE-ORF2. The results revealed that PCV3 Cap protein can be detected in HNX-ΔTK/ΔgE-ORF2-infected PK-15 cells by both western blotting and immunofluorescence assays. Vaccination with HNX-ΔTK/ΔgE-ORF2 did not cause pruritus, ruffled fur, systemic infection, or inflammation (without high expression of interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) in plasma). Furthermore, HNX-ΔTK/ΔgE-ORF2 immunization induced an anti-Cap specific antibody, activated a PRV-specific cellular immune response, and provided 100 % protection to mice against the challenge of the virulent HNX strain. Thus, HNX-ΔTK/ΔgE-ORF2 appears to be a promising vaccine candidate against PRV and PCV3 for the control of the PRV variant and PCV3.
Collapse
Affiliation(s)
- Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China
| | - Yufang Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China
| | - Ahmed H Ghonaim
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China; Desert Research Center, Cairo, 11435, Egypt
| | - Shengxian Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
12
|
Abstract
AbstractPorcine circovirus type 2 (PCV2), which serves as a major causative agent of PCV2-associated diseases and causes severe loss to the pig industry worldwide, can dysregulate the immune response and induce immunosuppression in PCV2-infected pigs. Similar to PCV2, porcine circovirus type 3 (PCV3), a newly identified swine circovirus which might be closely associated with porcine dermatitis and nephropathy syndrome, reproductive disorder, and multisystemic inflammatory responses, also interferes with host immune defense. Interaction between host immune system and PCVs is considered to be a crucial determinant of pathogenicity in pigs. Here, we sought to briefly discuss the current knowledge regarding the interaction of porcine circovirus type 2 and/or 3 with host immune cells and immune responses to better depict the viral immunomodulatory capacity, pathogenic mechanisms, and the future research direction in host immune responses to infection with PCV2 and PCV3.
Collapse
|
13
|
Chen S, Zhang L, Li X, Niu G, Ren L. Recent Progress on Epidemiology and Pathobiology of Porcine Circovirus 3. Viruses 2021; 13:v13101944. [PMID: 34696373 PMCID: PMC8538958 DOI: 10.3390/v13101944] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
The recently discovered porcine circovirus 3 (PCV3) belongs to the Circovirus genus of the Circoviridae family together with the other three PCVs, PCV1, PCV2, and PCV4. As reported, PCV3 can infect pig, wild boar, and several other intermediate hosts, resulting in single or multiple infections in the affected animal. The PCV3 infection can lead to respiratory diseases, digestive disorders, reproductive disorders, multisystemic inflammation, and immune responses. Up to now, PCV3 infection, as well as the disease caused by PCV3, has been reported in many swine farms worldwide with high positive rates, which indicates that the virus may be another important pathogen in the swine industry. Therefore, we reviewed the current progress on epidemiology and pathobiology of PCV3, which may provide the latest knowledge of the virus and PCV3-related diseases.
Collapse
|
14
|
Kang W, Wang Y, Yang W, Zhang J, Zheng H, Li D. Research Progress on the Structure and Function of G3BP. Front Immunol 2021; 12:718548. [PMID: 34526993 PMCID: PMC8435845 DOI: 10.3389/fimmu.2021.718548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding protein (G3BP) is an RNA binding protein. G3BP is a key component of stress granules (SGs) and can interact with many host proteins to regulate the expression of SGs. As an antiviral factor, G3BP can interact with viral proteins to regulate the assembly of SGs and thus exert antiviral effects. However, many viruses can also use G3BP as a proximal factor and recruit translation initiation factors to promote viral proliferation. G3BP regulates mRNA translation and attenuation to regulate gene expression; therefore, it is closely related to diseases, such as cancer, embryonic death, arteriosclerosis, and neurodevelopmental disorders. This review discusses the important discoveries and developments related G3BP in the biological field over the past 20 years, which includes the formation of SGs, interaction with viruses, stability of RNA, and disease progression.
Collapse
Affiliation(s)
- Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Rakibuzzaman A, Ramamoorthy S. Comparative immunopathogenesis and biology of recently discovered porcine circoviruses. Transbound Emerg Dis 2021; 68:2957-2968. [PMID: 34288522 DOI: 10.1111/tbed.14244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
Porcine circoviruses are important pathogens of production swine. Porcine circovirus type 1 (PCV1) is non-pathogenic, and discovered as a contaminant of a porcine kidney cell line, PK-15. The discovery of pathogenic variant, PCV2, occurred in the late 90s in association with post-weaning multi-systemic wasting disease syndrome (PMWS), which is characterized by wasting, respiratory signs and lymphadenopathy in weanling pigs. A new PCV type, designated as PCV3, was discovered in 2016, in pigs manifesting porcine dermatitis and nephropathy syndrome (PDNS), respiratory distress and reproductive failure. Pathological manifestations of PCV3 Infections include systemic inflammation, vasculitis and myocarditis. A fourth PCV type, PCV4, was identified in 2020 in pigs with PDNS, respiratory and enteric signs. All the pathogenic PCV types are detected in both healthy and morbid pigs. They cause chronic, systemic infections with various clinical manifestations. Dysregulation of the immune system homeostasis is a pivotal trigger for pathogenesis in porcine circoviral infections. While the study of PCV3 immunobiology is still in its infancy lessons learned from PCV2 and other circular replication-associated protein (Rep)-encoding single stranded (ss) (CRESS) DNA viruses can inform the field of exploration for PCV3. Viral interactions with the innate immune system, interference with dendritic cell function coupled with the direct loss of lymphocytes compromises both innate and adaptive immunity in PCV2 infections. Dysregulated immune responses leading to the establishment of a pro-inflammatory state, immune complex associated hypersensitivity, and the necrosis of lymphocytes and immune cells are key features of PCV3 immunopathogenesis. A critical overview of the comparative immunopathology of PCV2 and PCV3/4, and directions for future research in the field are presented in this review.
Collapse
Affiliation(s)
- Agm Rakibuzzaman
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Sheela Ramamoorthy
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
16
|
Porcine circovirus type 2 infection attenuates the K63-linked ubiquitination of STING to inhibit IFN-β induction via p38-MAPK pathway. Vet Microbiol 2021; 258:109098. [PMID: 33984793 DOI: 10.1016/j.vetmic.2021.109098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022]
Abstract
Porcine circovirus 2 (PCV2) has been proved to increase the risk of other pathogens infection via immunosuppression. Although the co-infection of PCV2 and porcine parvovirus (PPV) is commonly observed in worldwide, the relative immune mechanisms promoting PPV infection in PCV2-infected piglets are currently unknown. Herein, we found that PCV2 infection suppressed IFN-β expression and promoted PPV infection in the piglets. Consistent with this finding, we confirmed that PCV2 infection significantly inhibited the induction of IFN-β to promote PPV replication in cell level. Furthermore, PCV2 infection attenuated the K63-linked ubiquitination of STING induced by PPV, blocked the formation of complex of STING, TBK1 and IRF3, and further prevented the phosphorylation of TBK1 and IRF3, resulting in a decreased IFN-β transcription response to PPV infection. Consistently, using cGAMP to direct stimulate STING also appeared a reduced STING-K63 ubiquitination and IFN-β induction in PCV2-infected cells. However, we noted that knockdown of p38-MAPK signaling could markedly attenuate the inhibitory effect of PCV2 on STING-K63 ubiquitination, and improve the induction of IFN-β in PCV2-infected whenever theses cells were challenged with PPV infection or cGAMP stimulation. Meanwhile, we found that PCV2 infection promoted the phosphorylation of USP21 to inhibit the K63 ubiquitination of STING and the transcription of IFN-β via activation of p38-MAPK signaling. Taken together, our results demonstrate that PCV2 infection activates the p38-MAPK signaling pathway-mediated USP21 phosphorylation to inhibit the K63 ubiquitination of STING, which prevents the phosphorylation and transportation to the nucleus of IRF3, leading to an increase risk for PPV infection.
Collapse
|