1
|
Quinn CT. What is the best treatment for hypotension in healthy dogs during anaesthesia maintained with isoflurane? Aust Vet J 2024; 102:264-273. [PMID: 38343013 DOI: 10.1111/avj.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 04/30/2024]
Abstract
Hypotension is a common and potentially life-threatening complication of general anaesthesia in dogs. Due to the combination of cardiovascular side effects of many anaesthetic, sedative and analgesic drugs used peri-operatively hypotension is frequently reported even in healthy dogs undergoing elective procedures. Several treatment options for hypotension have been advocated. Potential treatments include rapid administration of either crystalloid or colloid fluids; pharmacological treatments to increase cardiac output and/or systemic vascular resistance; or reduction in the delivery of the volatile anaesthetic agents. This critical appraisal considers the current evidence for which treatment is the best option for treating hypotension in healthy euvolemic dogs undergoing general anaesthesia maintained with isoflurane. Fourteen relevant studies were appraised, including 12 laboratory studies and two small clinical trials. One study demonstrated that reduction in the delivery of isoflurane may correct hypotension, but this treatment may not always be feasible. In general, rapid administration of fluids did not increase blood pressure and failed to correct hypotension. Synthetic colloids demonstrated some efficacy, but results were inconsistent between studies and large volumes may be required. Infusion of dopamine appears to be the most reliable pharmacological option consistently increasing blood pressure, cardiac output and correcting hypotension.
Collapse
Affiliation(s)
- C T Quinn
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
2
|
Henao-Guerrero N, Ricco-Pereira CH, Paranjape VV. A Comparison of Dobutamine, Norepinephrine, Vasopressin, and Hetastarch for the Treatment of Isoflurane-Induced Hypotension in Healthy, Normovolemic Dogs. Animals (Basel) 2023; 13:2674. [PMID: 37627465 PMCID: PMC10451654 DOI: 10.3390/ani13162674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Isoflurane is a commonly used inhalation anesthetic in species undergoing veterinary care that induces hypotension, impacting organ perfusion, making it imperative to minimize its occurrence or identify effective strategies for treating it. This study evaluated and compared the hemodynamic effects of DOB, NEP, VAS, and HES in twelve isoflurane-anesthetized Beagle dogs. The order of the first three treatments was randomized. HES was administered last. Data were collected before treatments (baseline) and after 10 min of a sustained MAP of <45 mmHg induced by a high end-tidal isoflurane concentration (T0). Once treatment was initiated and the target MAP was achieved (65 to 80 mmHg) or the maximum dose reached, data were collected after 15 min of stabilization (T1) and 15 min after (T2). A 15 min washout period with a MAP of ≥65 mmHg was allowed between treatments. The intravenous dosage regimens started and were increased by 50% every five minutes until the target MAP or maximum dose was reached. The dosages were as follows: DOB, 5-15 μg/kg/min; NEP, 0.1-2 μg/kg/min; VAS, 0.5-5 mU/kg/min; and HET, 6% 1-20 mL/kg/min. DOB improved CO, DO2, and VO2, but reduced SVR. VAS elevated SVR, but decreased CO, DO2, and VO2. HES minimally changed BP and mildly augmented CO, DO2, and VO2. These treatments failed to reach the target MAP. NEP increased the arterial BP, CO, MPAP, and PAWP, but reduced HR. Norepinephrine infusion at 0.44 ± 0.19 μg/kg/min was the most efficient therapy for correcting isoflurane-induced hypotension.
Collapse
Affiliation(s)
- Natalia Henao-Guerrero
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Carolina H. Ricco-Pereira
- Department of Veterinary Clinical Sciences, The Ohio State University-College of Veterinary Medicine, Columbus, OH 43210, USA;
| | - Vaidehi V. Paranjape
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| |
Collapse
|
3
|
Wang Y, Zhang E, Ye C, Wu B. Refractory Hypotension in a Late-Onset Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) Male with m.3243 A>G Mutation: A Case Report. Brain Sci 2023; 13:1080. [PMID: 37509011 PMCID: PMC10377322 DOI: 10.3390/brainsci13071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Introduction: Symptom spectrum can be of great diversity and heterogeneity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients in clinical practice. Here, we report a case of MELAS presenting asymptomatic refractory hypotension with m.3243 A>G mutation. (2) Case representation: A 51-year-old male patient presented with a headache, vertigo, and difficulty in expression and understanding. The magnetic resonance imaging of the brain revealed an acute stroke-like lesion involving the left temporoparietal lobe. A definitive diagnosis of MELAS was given after the genetic test identified the chrM-3243 A>G mutation. The patient suffered recurrent stroke-like episodes in the 1-year follow-up. Notably, refractory hypotension was observed during hospitalizations, and no significant improvement in blood pressure was found after continuous use of vasopressor drugs and fluid infusion therapy. (3) Conclusions: We report a case of refractory hypotension which was unresponsive to fluid infusion therapy found in a patient with MELAS. Our case suggests that comprehensive management should be paid attention to during treatment. A further study on the pathological mechanism of the multisystem symptoms in MELAS would be beneficial to the treatment of patients.
Collapse
Affiliation(s)
- Youjie Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Enhui Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Henze IS, Hilpert L, Kutter APN. Development and comparison of an esophageal Doppler monitoring-based treatment algorithm with a heart rate and blood pressure-based treatment algorithm for goal-directed fluid therapy in anesthetized dogs: A pilot study. Front Vet Sci 2022; 9:1008240. [PMID: 36262533 PMCID: PMC9574010 DOI: 10.3389/fvets.2022.1008240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of this pilot study was to determine the feasibility of a study comparing the efficacy of an esophageal Doppler monitor (EDM)-based fluid therapy algorithm with a heart rate (HR)- and mean arterial blood pressure (MAP)-based algorithm in reducing hypotension and fluid load in anesthetized dogs. Client-owned dogs undergoing general anesthesia for surgical procedures were randomized to two groups. An EDM probe for monitoring blood flow in the descending aorta was placed in each dog before receiving a crystalloid bolus (5 mL/kg) over 5 min. Fluids were repeated in case of fluid responsiveness defined by increasing Velocity Time Integral (VTI) ≥ 10% in group EDM and by decreasing HR ≥ 5 beats/min and/or increasing MAP ≥ 3 mmHg in group standard. The feasibility outcomes included the proportion of dogs completing the study and the clinical applicability of the algorithms. The clinical outcomes were the total administered fluid volume and the duration of hypotension defined as MAP < 60 mmHg. Data was compared between groups with Mann-Whitney U-test. p < 0.05 were deemed significant. Of 25 dogs screened, 14 completed the study (56%). There were no differences in the proportion of recorded time spent in hypotension in group standard [2 (0–39)% (median (range))] and EDM [0 (0–63) %, p = 1], or the total volume of fluids [standard 8 (5–14) mL/kg/h, EDM 11 (4–20) mL/kg/h, p = 0.3]. This study declined the feasibility of a study comparing the impact of two newly developed fluid therapy algorithms on hypotension and fluid load in their current form. Clinical outcome analyses were underpowered and no differences in treatment efficacy between the groups could be determined. The conclusions drawn from this pilot study provide important information for future study designs.
Collapse
|
5
|
Yang W, Li H, Cheng Z, Lu Y, Li W, Feng J, Wang L, Cheng J. Dex modulates the balance of water-electrolyte metabolism by depressing the expression of AVP in PVN. Front Pharmacol 2022; 13:919032. [PMID: 36081946 PMCID: PMC9445239 DOI: 10.3389/fphar.2022.919032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Dexmedetomidine (Dex) is a highly selective α2 adrenergic agonist used in clinical anesthesia. Studies have shown that Dex can act on the collecting duct and reduce the body’s water reabsorption, thereby increasing water discharge. However, the specific mechanism of Dex on water homeostasis remains unclear. The hypothalamus is the regulatory center of water and salt balance and secretes related neurochemical hormones, such as arginine vasopressin (AVP), to regulate the discharge of water and salt. The paraventricular nucleus (PVN) and supraoptic nucleus (SON) in the hypothalamus are also considered to be the key targets of the thirst loop. They are responsible for the secretion of AVP. The suprachiasmatic nucleus (SCN) is also one of the brain regions where AVP neurons are densely distributed in the hypothalamus. This study used C57BL/6J mice for behavior, immunofluorescence, and blood analysis experiments. Our results showed that Dex could not only depress the expression of AVP in the PVN but also reduce serum AVP concentration. The animal water intake was decreased without impairing the difference in food consumption and the urine excretion was enhanced after the intraperitoneal injection of Dex, while AVP supplementation restored the water intake and inhibited the urine excretion of mice in the Dex group. In addition, the renin-angiotensin-aldosterone system is vital to maintaining serum sodium concentration and extracellular volume. We found that serum sodium, serum chloride, serum aldosterone (ALD) concentration, and plasma osmolality were decreased in the Dex group, which inhibited water reabsorption, and the plasma osmolarity of mice in the Dex group supplemented with AVP was significantly higher than that in Dex group. We also found that Dex significantly increased the concentration of blood urea nitrogen and decreased the concentration of creatinine within the normal range of clinical indicators, indicating that there was no substantive lesion in the renal parenchyma. These results showed that Dex could modulate the balance of water-electrolyte metabolism by depressing the expression of AVP in PVN without impairing renal function.
Collapse
Affiliation(s)
- Wenzhi Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hao Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen Neher Neural Plasticity Laboratory, Shenzhen Key Laboratory of Drug Addiction, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Zhongle Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - You Lu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wuli Li
- College and Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Jun Feng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Juan Cheng, ; Liecheng Wang,
| | - Juan Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Juan Cheng, ; Liecheng Wang,
| |
Collapse
|
6
|
Teixeira-Neto FJ, Valverde A. Clinical Application of the Fluid Challenge Approach in Goal-Directed Fluid Therapy: What Can We Learn From Human Studies? Front Vet Sci 2021; 8:701377. [PMID: 34414228 PMCID: PMC8368984 DOI: 10.3389/fvets.2021.701377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Resuscitative fluid therapy aims to increase stroke volume (SV) and cardiac output (CO) and restore/improve tissue oxygen delivery in patients with circulatory failure. In individualized goal-directed fluid therapy (GDFT), fluids are titrated based on the assessment of responsiveness status (i.e., the ability of an individual to increase SV and CO in response to volume expansion). Fluid administration may increase venous return, SV and CO, but these effects may not be predictable in the clinical setting. The fluid challenge (FC) approach, which consists on the intravenous administration of small aliquots of fluids, over a relatively short period of time, to test if a patient has a preload reserve (i.e., the relative position on the Frank-Starling curve), has been used to guide fluid administration in critically ill humans. In responders to volume expansion (defined as individuals where SV or CO increases ≥10–15% from pre FC values), FC administration is repeated until the individual no longer presents a preload reserve (i.e., until increases in SV or CO are <10–15% from values preceding each FC) or until other signs of shock are resolved (e.g., hypotension). Even with the most recent technological developments, reliable and practical measurement of the response variable (SV or CO changes induced by a FC) has posed a challenge in GDFT. Among the methods used to evaluate fluid responsiveness in the human medical field, measurement of aortic flow velocity time integral by point-of-care echocardiography has been implemented as a surrogate of SV changes induced by a FC and seems a promising non-invasive tool to guide FC administration in animals with signs of circulatory failure. This narrative review discusses the development of GDFT based on the FC approach and the response variables used to assess fluid responsiveness status in humans and animals, aiming to open new perspectives on the application of this concept to the veterinary field.
Collapse
Affiliation(s)
- Francisco José Teixeira-Neto
- Departmento de Cirurgia Veterinária e Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, Brazil
| | - Alexander Valverde
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Marchese GA, Pascal M. Effect of methylene blue used as medical dye on blood pressure in a dog undergoing partial pancreatectomy. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Manuela Pascal
- Anaesthesia and Analgesia Southfields Veterinary Specialists Basildon UK
| |
Collapse
|