1
|
Kumar P, Tiwari S, Uguz S, Li Z, Gonzalez J, Wei L, Samuel RS, Zhang Y, Yang X. Bioaerosols downwind from animal feeding operations: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135825. [PMID: 39326148 DOI: 10.1016/j.jhazmat.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Bioaerosols originating from animal feeding operations (AFOs) may carry pathogens, allergens, and other hazardous biocomponents, such as endotoxins, posing a potential risk to community health and the environment when dispersed downwind. This review summarizes and synthesizes existing literature data on bioaerosols downwind from three major types of AFOs (swine, poultry, and cattle), covering their composition, concentration, dispersion patterns, measurement methodologies, potential health effects, and mitigation strategies. While many of these bioaerosols are typically detected only near AFOs, evidence indicates that certain bioaerosols, particularly viruses, can travel up to tens of kilometers downwind and remain infectious. Despite the critical importance of these bioaerosols, a refined modeling framework to simulate their transport and fate in downwind air has not yet been developed, nor have source attribution methods been established to track their origins in complex agricultural environments where multiple bioaerosols could co-exist. Therefore, it is imperative to further research downwind bioaerosols from AFOs, including their assessment, modeling, source attribution, and mitigation, to address the public health and environmental challenges associated with animal agriculture.
Collapse
Affiliation(s)
- Pradeep Kumar
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Shalini Tiwari
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Seyit Uguz
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA; Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16240, Turkey
| | - Zonggang Li
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jose Gonzalez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lin Wei
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Yuanhui Zhang
- Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xufei Yang
- Agricultural and Biosystems Engineering Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
2
|
Bullone M, Bellato A, Robino P, Nebbia P, Morello S, Marchis D, Tarducci A, Ru G. Prevalence and risk factors associated with nasal carriage of methicillin-resistant staphylococci in horses and their caregivers. Vet Res 2024; 55:108. [PMID: 39252070 PMCID: PMC11386249 DOI: 10.1186/s13567-024-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is a global threat, and pet-associated strains may pose a risk to human health. Equine veterinarians are at high risk of carrying methicillin-resistant staphylococci (MRS), but specific risk factors remain elusive, and few data are available for other personnel involved in the horse industry. The prevalence, characteristics, and risk factors for nasal carriage of MRS in horses and their caregivers were studied in northwestern Italy. Nasal swabs from 110 asymptomatic horses housed at 21 barns and 34 human caregivers were collected. Data on barns, horses, and personnel were acquired through questionnaires. The samples were incubated in selective media, and the bacterial isolates were identified by mass spectrometry. Risk factors were investigated by Poisson regression. MRS were isolated from 33 horses (30%), 11 humans (32.4%) and 3 environmental samples (14.2%). Most isolates were multidrug resistant (MDRS). The prevalence of MRS and MDRS was greater in racehorses and their personnel than in pleasurable and jumping/dressing horses. MRS carriage in caregivers was associated with an increased prevalence of MRS carriage in horses. The frequency of antimicrobial treatments administered in the barn during the last 12 months was a risk factor for MRS carriage in horses [prevalence ratio (PR) 3.97, 95% CI 1.11, 14.13] and caregivers (PR 2.00, 95% CI 1.05, 3.82), whereas a good ventilation index of the horse tabling environment was a protective factor (PR 0.43, 95% CI 0.20, 0.92). Our data reveal relevant interactions occurring between bacterial communities of horses and humans that share the same environment, suggesting that One Health surveillance programs should be implemented.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy.
| | - Alessandro Bellato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Sara Morello
- Feed Hygiene Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Daniela Marchis
- Feed Hygiene Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Alberto Tarducci
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Giuseppe Ru
- Biostatistics, Epidemiology and Risk Analysis Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 220, 10154, Torino, Italy
| |
Collapse
|
3
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
4
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
5
|
Suppression of Methicillin-Resistant Staphylococcus aureus and Reduction of Other Bacteria by Black Soldier Fly Larvae Reared on Potato Substrate. Microbiol Spectr 2022; 10:e0232122. [PMID: 36197291 PMCID: PMC9602475 DOI: 10.1128/spectrum.02321-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Larvae of black soldier flies, Hermetia illucens, are increasingly used for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. The presence of pathogenic microorganisms in harvested larvae may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium associated with various environments that can be pathogenic to humans and farmed animals. We tested whether black soldier fly larvae suppress MRSA on potato substrate. Autoclaved potatoes containing black soldier fly larvae (P+BSFL), potatoes inoculated with MRSA and containing black soldier fly larvae (P+MRSA+BSFL), and potatoes inoculated with MRSA (P+MRSA) were incubated in glass jars. Substrate samples were taken after 3 and 7 days of incubation and plated on Trypticase soy agar (TSA) and Staphylococcus medium 110 agar (SA) to quantify total bacteria and MRSA, respectively. DNA was extracted from potato substrates on both days and sequenced to assess bacterial and fungal diversity using 515F/806R and internal transcribed spacer (ITS) 1/2 primers, respectively, and QIIME 2.0 software. Both total bacterial and MRSA-specific CFU were reduced in the presence of black soldier fly larvae, with a larger reduction for the latter. Twenty-five bacterial genera and 3 fungal genera were detected. Twenty bacterial genera were shared among the treatments and the days, but their relative abundances often varied. Among the most abundant genera, only Enterococcus and Lactococcus were universally present. Our findings confirm antimicrobial properties of black soldier fly larvae. IMPORTANCE Larvae of black soldier flies, Hermetia illucens, may be used to provide an environmentally sustainable and economically viable method for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. However, contamination of harvested larvae by pathogenic microorganisms inhabiting decaying substrates may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties, including suppression of several common pathogens. Our study showed that such a suppression applies to methicillin-resistant Staphylococcus aureus, which is a ubiquitous bacterium pathogenic to animals (including humans).
Collapse
|
6
|
Gerken T, Wiegner TN, Economy LM. A comparison of soil Staphylococcus aureus and fecal indicator bacteria concentrations across land uses in a Hawaiian watershed. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:916-929. [PMID: 35653014 DOI: 10.1002/jeq2.20380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and fecal indicator bacteria (FIB; Enterococcus spp., Clostridium perfringens) concentrations increase in Hawaiian streams and estuaries following storms and pose a health threat to recreational water users. To reduce this risk, watershed bacteria sources need to be identified for management actions. This study's goals were to identify soil bacteria sources among different land uses and to determine if their concentrations were associated with different soil properties. Soil samples were collected three times on 24 d between October 2017 and November 2018 at urban, agriculture, and native-forest land uses in the Hilo Bay watershed, Hawai'i Island, Hawai'i. Soil bacteria concentrations were quantified using culturing techniques with selective media. Staphylococcus aureus, MRSA, and FIB were present in soil from all land uses. Bacteria concentrations were highest in urban soils and lowest in native-forest soils, with up to three orders of magnitude differences among land uses. Staphylococcus aureus, MRSA, and FIB soil concentrations were positively correlated with each other and with soil temperature and pH, but inversely correlated with soil moisture and organic matter content. Our results demonstrate that soils are a watershed bacteria source and that some soil properties affect their concentrations. Identifying these sources is critical for implementing management actions to reduce pathogen loads to estuaries and transmission to recreational water users.
Collapse
Affiliation(s)
- Tyler Gerken
- Geography and Environmental Science Dep., Univ. of Hawai'i at Hilo, 200 W. Kāwili St., Hilo, HI, 96720, USA
- Dep. of Environmental and Occupational Health Sciences, School of Public Health, Univ. of Washington, 3980 15th Ave. NE, Seattle, WA, 98195, USA
| | - Tracy N Wiegner
- Marine Science Dep., Univ. of Hawai'i at Hilo, 200 W. Kāwili St., Hilo, HI, 96720, USA
| | - Louise M Economy
- Tropical Conservation Biology and Environmental Science Graduate Program, Univ. of Hawai'i at Hilo, Hilo, HI, 96720, USA
| |
Collapse
|
7
|
Abstract
Particulate matter (PM) represents an air quality management challenge for confined swine production systems. Due to the limited space and ventilation rate, PM can reach relatively high concentrations in swine barns. PM in swine barns possesses different physical, chemical, and biological characteristics than that in the atmosphere and other indoor environments. As a result, it exerts different environmental and health effects and creates some unique challenges regarding PM measurement and mitigation. Numerous research efforts have been made, generating massive data and information. However, relevant review reports are sporadic. This study aims to provide an updated comprehensive review of swine barn PM, focusing on publications since 1990. It covers various topics including PM characteristics, sources, measurement methods, and in-barn mitigation technologies. As PM in swine barns is primarily of biological origins, bioaerosols are reviewed in great detail. Relevant topics include bacterial/fungal counts, viruses, microbial community composition, antibiotic-resistant bacteria, antibiotic resistance genes, endotoxins, and (1→3)-β-D-glucans. For each topic, existing knowledge is summarized and discussed and knowledge gaps are identified. Overall, PM in swine barns is complicated in chemical and biological composition and highly variable in mass concentrations, size, and microbial abundance. Feed, feces, and skins constitute the major PM sources. Regarding in-barn PM mitigation, four technologies (oil/water sprinkling, ionization, alternation of feed and feeders, and recirculating air filtration) are dominant. However, none of them have been widely used in commercial barns. A collective discussion of major knowledge gaps and future research needs is offered at the end of the report.
Collapse
|