1
|
Han S, Oh D, Balmelle N, Cay AB, Ren X, Droesbeke B, Tignon M, Nauwynck H. Replication Characteristics of African Swine Fever Virus (ASFV) Genotype I E70 and ASFV Genotype II Belgium 2018/1 in Perivenous Macrophages Using Established Vein Explant Model. Viruses 2024; 16:1602. [PMID: 39459935 PMCID: PMC11512260 DOI: 10.3390/v16101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
African Swine Fever Virus (ASFV), resulting in strain-dependent vascular pathology, leading to hemorrhagic fever, is an important pathogen in swine. The pathogenesis of ASFV is determined by the array and spatial distribution of susceptible cells within the host. In this study, the replication characteristics of ASFV genotype I E70 (G1-E70) and ASFV genotype II Belgium 2018/1 (G2-B18) in the environment of small veins were investigated in an established vein explant model. Immunofluorescence staining analysis revealed that perivenous macrophages (CD163+ cells) were widely distributed in the explant, with most of them (approximately 2-10 cells/0.03 mm2) being present close to the vein (within a radius of 0-348 µm). Upon inoculation with G1-E70 and G2-B18, we observed an increase in the quantity of cells testing positive for viral antigens over time. G1-E70 replicated more efficiently than G2-B18 in the vein explants (7.6-fold for the ear explant at 72 hpi). The majority of ASFV+ cells were CD163+, indicating that macrophages are the primary target cells. Additional identification of cells infected with ASFV revealed the presence of vimentin+, CD14+, and VWF+ cells, demonstrating the cellular diversity and complexity associated with ASFV infection. By the use of this new vein explant model, the susceptibility of vascular and perivascular cells to an ASFV infection was identified. With this model, it will be possible now to conduct more functional analyses to get better insights into the pathogenesis of ASFV-induced hemorrhages.
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadège Balmelle
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Ann Brigitte Cay
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Brecht Droesbeke
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Marylène Tignon
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
2
|
Pius L, Huang S, Wanjala G, Bagi Z, Kusza S. African Local Pig Genetic Resources in the Context of Climate Change Adaptation. Animals (Basel) 2024; 14:2407. [PMID: 39199941 PMCID: PMC11350805 DOI: 10.3390/ani14162407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Africa is home to a wide diversity of locally adapted pig breeds whose genetic architecture offers important insights into livestock adaptation to climate change. However, the majority of these inherent traits have not been fully highlighted. This review presents an overview of the current state of African pig genetic resources, providing highlights on their population and production statistics, production system, population diversity indices, and genomic evidence underlying their evolutionary potential. The study results reveal an incomplete characterization of local pig genotypes across the continent. The characterized population, however, demonstrates moderate to high levels of genetic diversity, enough to support breeding and conservation programs. Owing to low genetic differentiation and limited evidence of distinct population structures, it appears that most local pig populations are strains within larger breeds. Genomic evidence has shown a higher number of selection signatures associated with various economically important traits, thus making them potential candidates for climate change adaptation. The reportedly early evidence of hybridization with wild suid groups further suggests untapped insights into disease resistance and resilience traits that need to be illuminated using higher-density markers. Nevertheless, gene introgression from commercial breeds is prevalent across Africa; thus, efforts to realize and utilize these traits must increase before they are permanently depleted.
Collapse
Affiliation(s)
- Lenox Pius
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.P.); (S.H.)
- Animal Breeding and Genetics Resource Section, Tanzania Livestock Research Institute (TALIRI), Dodoma 41207, Tanzania
| | - Shuntao Huang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.P.); (S.H.)
| | - George Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.W.); (Z.B.)
- Doctoral School of Animal Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
- Institute of Animal Sciences and Wildlife Management, University of Szeged, Andrássy út 15, 6800 Hódmezővásárhely, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.W.); (Z.B.)
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.W.); (Z.B.)
| |
Collapse
|
3
|
Penrith ML, van Emmenes J, Hakizimana JN, Heath L, Kabuuka T, Misinzo G, Odoom T, Wade A, Zerbo HL, Luka PD. African Swine Fever Diagnosis in Africa: Challenges and Opportunities. Pathogens 2024; 13:296. [PMID: 38668251 PMCID: PMC11054189 DOI: 10.3390/pathogens13040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
The global spread of African swine fever (ASF) in recent decades has led to the need for technological advances in sampling and diagnostic techniques. The impetus for these has been the need to enable sampling by lay persons and to obtain at least a preliminary diagnosis in the field for early control measures to be put in place before final laboratory confirmation. In rural Africa, rapid diagnosis is hampered by challenges that include lack of infrastructure as well as human and financial resources. Lack of animal health personnel, access to affordable means to transport field samples to a laboratory, and lack of laboratories with the capacity to make the diagnosis result in severe under-reporting of ASF, especially in endemic areas. This review summarizes the challenges identified in gap analyses relevant to low- and middle-income countries, with a focus on Africa, and explore the opportunities provided by recent research to improve field diagnosis and quality of diagnostic samples used. Sampling techniques include invasive sampling techniques requiring trained personnel and non-invasive sampling requiring minimal training, sampling of decomposed carcass material, and preservation of samples in situations where cold chain maintenance cannot be guaranteed. Availability and efficacy of point-of-care (POC) tests for ASF has improved considerably in recent years and their application, as well as advantages and limitations, are discussed. The adequacy of existing laboratory diagnostic capacity is evaluated and opportunities for networking amongst reference and other laboratories offering diagnostic services are discussed. Maintaining laboratory diagnostic efficiency in the absence of samples during periods of quiescence is another issue that requires attention, and the role of improved laboratory networking is emphasized. Early diagnosis of ASF is key to managing the disease spread. Therefore, the establishment of the Africa Chapter of the Global African Swine Fever Research Alliance (GARA) increases opportunities for collaboration and networking among the veterinary diagnostic laboratories in the region.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Juanita van Emmenes
- Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria 0110, South Africa; (J.v.E.); (L.H.)
| | - Jean N. Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania; (J.N.H.); (G.M.)
| | - Livio Heath
- Transboundary Animal Diseases, Onderstepoort Veterinary Institute, Agricultural Research Council, Pretoria 0110, South Africa; (J.v.E.); (L.H.)
| | - Tonny Kabuuka
- National Livestock Resources Research Institute, National Agricultural Research Organization, Entebbe P.O. Box 295, Uganda;
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania; (J.N.H.); (G.M.)
- Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro P.O. Box 3019, Tanzania
| | - Theophilus Odoom
- Veterinary Services Directorate, Accra Veterinary Laboratory, Accra P.O. Box M161, Ghana;
| | - Abel Wade
- National Veterinary Laboratory (LANAVET), Garoua P.O. Box 503, Cameroon;
| | - Habibata L. Zerbo
- Ministry of Agriculture, Animal and Fisheries Resources, Ouagadougou 03 BP 907, Burkina Faso;
| | - Pam D. Luka
- Biotechnology Centre, National Veterinary Research Institute, PMB 1, Vom 930103, Nigeria
| |
Collapse
|
4
|
Thaweerattanasinp T, Kaewborisuth C, Viriyakitkosol R, Saenboonrueng J, Wanitchang A, Tanwattana N, Sonthirod C, Sangsrakru D, Pootakham W, Tangphatsornruang S, Jongkaewwattana A. Adaptation of African swine fever virus to MA-104 cells: Implications of unique genetic variations. Vet Microbiol 2024; 291:110016. [PMID: 38340553 DOI: 10.1016/j.vetmic.2024.110016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood. Here, we adapted ASFV field isolates to efficiently propagate through serial viral passages in MA-104 cells. The adapted ASFV strain developed a pronounced cytopathic effect and robust infection in MA-104 cells. Interestingly, the adapted variant maintained its tropism in primary porcine kidney macrophages. Whole genome analysis of the adapted virus revealed unique gene deletions in the left and right variable regions of the viral genome compared to other previously reported cell culture-adapted ASFV strains. Notably, gene duplications at the 5' and 3' ends of the viral genome were in reverse complementary alignment with their paralogs. Single point mutations in protein-coding genes and intergenic regions were also observed in the viral genome. Collectively, our results shed light on the significance of these unique genetic changes during adaptation, which facilitate the growth of ASFV in MA-104 cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chutima Sonthirod
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Duangjai Sangsrakru
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wirulda Pootakham
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Team, National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
5
|
Aryee SND, Owusu-Adjei D, Osei-Amponsah R, Skinner BM, Amuzu-Aweh EN, Ahunu B, Enright A, Sargent CA. Population Structure and Genomic Characterisation of the Ashanti Dwarf Pig of Ghana. Animals (Basel) 2024; 14:792. [PMID: 38473177 DOI: 10.3390/ani14050792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
There is still limited information on the genomic structure and genetic diversity of African pigs. Genetic diversity studies can contribute significantly to the genetic improvement and conservation of African pigs. This study presents a genetic diversity analysis and population structure of pig breeds in Ghana, with a focus on the Ashanti Dwarf pig (ADP), an indigenous pig breed of Ghana. A total of 167 pigs sampled in Ghana and populations consisting of Ashanti Dwarf pigs (n = 106), exotics (mostly European pigs) (n = 11), crosses (between indigenous and exotic breeds) (n = 44), and unknown breeds (nondescript) (n = 6) were genotyped using Porcine SNP60K BeadChip. Moderate heterozygosity levels, ranging from 0.28 for Ashanti Dwarf pigs to 0.31 for exotic pigs (mostly European pigs), were observed. Principal component analysis of the pig populations within Ghana resulted in two distinct clusters of pigs: (i) Northern and (ii) Southern regional clusters. The PCA based on breed also resulted in four clusters: (i) ADPs; (ii) exotics (iii) crossbreeds between ADP and exotics; (iv) unknown breed types. The PCA demonstrated that the clustering was influenced by genetics, geographical location, production systems, and practices. ADMIXTURE-based analysis also showed that the populations within Ghana are admixed. FST analysis revealed SNPs associated with QTLs for traits such as disease resilience and growth among ADP populations within the different regional and ecological zones of Ghana.
Collapse
Affiliation(s)
- Sethlina Naa Dodua Aryee
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
- Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Dennis Owusu-Adjei
- Department of Animal Science, University of Ghana, Accra P.O. Box LG43, Ghana
| | | | | | | | - Benjamin Ahunu
- Department of Animal Science, University of Ghana, Accra P.O. Box LG43, Ghana
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge CB2 1TN, UK
| | | |
Collapse
|
6
|
Lee SC, Kim Y, Cha JW, Chathuranga K, Dodantenna N, Kwon HI, Kim MH, Jheong W, Yoon IJ, Lee JY, Yoo SS, Lee JS. CA-CAS-01-A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus. J Microbiol 2024; 62:125-134. [PMID: 38480615 PMCID: PMC11021262 DOI: 10.1007/s12275-024-00116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, 62407, Republic of Korea
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeok-Il Kwon
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Min Ho Kim
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, 62407, Republic of Korea
| | - In-Joong Yoon
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Joo Young Lee
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Sung-Sik Yoo
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Kennedy M, Delhon G, McVey DS, Vu H, Borca M. Asfarviridae and Iridoviridae. Vet Microbiol 2022. [DOI: 10.1002/9781119650836.ch49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Meng K, Zhang Y, Liu Q, Huyan Y, Zhu W, Xiang Y, Meng G. Structural Design and Assessing of Recombinantly Expressed African Swine Fever Virus p72 Trimer in Saccharomyces cerevisiae. Front Microbiol 2022; 13:802098. [PMID: 35774459 PMCID: PMC9239254 DOI: 10.3389/fmicb.2022.802098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In an effort to control the outbreak of the African Swine Fever Virus (ASFV), there is an urgent need to develop an effective method to prevent the pandemic, including vaccines and diagnostic methods. The major capsid protein of ASFV p72 (B646L), which forms a trimer with each monomer adopting a double jelly roll fold, is the main component of the virus particle and major antigen of ASFV. Thus, the p72 protein may be considered an antigen candidate for vaccine and diagnostic development. However, the development of ASFV p72 trimer for the industry application, including veterinary usage, faces unavoidable challenges: firstly, the low cost of the antigen production is required in vaccine and diagnostic application; and, secondly, whether produced antigen folds in its native conformation. Here, based on the information provided by the atomic structure of p72, we have successfully performed rational mutagenesis on p72 trimers and expressed it in Saccharomyces cerevisiae with high yields. The cryo-EM structure of recombinant expressed p72 trimer is determined at 4.18 Å in resolution. The correlation coefficient between this structure and the ASFV virus structure is 0.77, suggesting a highly similar fold of this trimer with the native protein on the virus particle.
Collapse
Affiliation(s)
- Kaiwen Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi Liu
- School of Medicine, Tsinghua University, Beijing, China
| | - Yangnan Huyan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenzhuang Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Xiang
- School of Medicine, Tsinghua University, Beijing, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Geng Meng
| |
Collapse
|
9
|
Nikovics K, Durand M, Castellarin C, Burger J, Sicherre E, Collombet JM, Oger M, Holy X, Favier AL. Macrophages Characterization in an Injured Bone Tissue. Biomedicines 2022; 10:biomedicines10061385. [PMID: 35740407 PMCID: PMC9219779 DOI: 10.3390/biomedicines10061385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial use is a promising approach to facilitate wound healing of the bone tissue. Biomaterials induce the formation of membrane capsules and the recruitment of different types of macrophages. Macrophages are immune cells that produce diverse combinations of cytokines playing an important role in bone healing and regeneration, but the exact mechanism remains to be studied. Our work aimed to identify in vivo macrophages in the Masquelet induced membrane in a rat model. Most of the macrophages in the damaged area were M2-like, with smaller numbers of M1-like macrophages. In addition, high expression of IL-1β and IL-6 cytokines were detected in the membrane region by RT-qPCR. Using an innovative combination of two hybridization techniques (in situ hybridization and in situ hybridization chain reaction (in situ HCR)), M2b-like macrophages were identified for the first time in cryosections of non-decalcified bone. Our work has also demonstrated that microspectroscopical analysis is essential for macrophage characterization, as it allows the discrimination of fluorescence and autofluorescence. Finally, this work has revealed the limitations of immunolabelling and the potential of in situ HCR to provide valuable information for in vivo characterization of macrophages.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (C.C.); (E.S.); (M.O.); (A.-L.F.)
- Correspondence: or ; Tel.: +33-(0)-1-78-65-13-331
| | - Marjorie Durand
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (M.D.); (J.-M.C.)
| | - Cédric Castellarin
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (C.C.); (E.S.); (M.O.); (A.-L.F.)
| | - Julien Burger
- Microbiology and Infectious Diseases Department, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | - Emma Sicherre
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (C.C.); (E.S.); (M.O.); (A.-L.F.)
| | - Jean-Marc Collombet
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (M.D.); (J.-M.C.)
| | - Myriam Oger
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (C.C.); (E.S.); (M.O.); (A.-L.F.)
| | - Xavier Holy
- Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | - Anne-Laure Favier
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (C.C.); (E.S.); (M.O.); (A.-L.F.)
| |
Collapse
|
10
|
Meloni D, Franzoni G, Oggiano A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines (Basel) 2022; 10:707. [PMID: 35632463 PMCID: PMC9144233 DOI: 10.3390/vaccines10050707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus-host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation.
Collapse
Affiliation(s)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (D.M.); (A.O.)
| | | |
Collapse
|
11
|
Oh T, Do DT, Lai DC, Nguyen LT, Lee JY, Van Le P, Chae C. Chronological expression and distribution of African swine fever virus p30 and p72 proteins in experimentally infected pigs. Sci Rep 2022; 12:4151. [PMID: 35264737 PMCID: PMC8907298 DOI: 10.1038/s41598-022-08142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
African swine fever virus (ASFV), the causative agent of contagious hemorrhagic disease in domestic pigs and wild boars, has temporally regulated gene expression kinetics. The p30 and p72 major structural proteins are involved in viral entry each with different expression kinetics, but neither of their chronological expressions and distribution have been identified in virus-infected animals. Here, we found that both transcription and translation levels of p30 were significantly higher than those of p72 in target organs during the earlier infection-phase. Lymphocyte apoptosis/necrosis and angiectasia were observed as signs of early infection with acute African swine fever. These results show that the chronologically differential expression of ASFV structural proteins tends to be prominent in infected animals, and the p30 protein could play a role in the indication of acute lesions during early infection compared to the late-expressed p72 protein. In conclusion, we propose to consider the chronological expression dynamics of ASFV structural proteins in infected animals to understand virus pathogenesis and antigen targeting for vaccine development.
Collapse
Affiliation(s)
- Taehwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Duy Tien Do
- Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Thu Duc district, Ho Chi Minh City, Vietnam
| | - Danh Cong Lai
- Faculty of Animal Sciences and Veterinary Medicine, Nong Lam University, Thu Duc district, Ho Chi Minh City, Vietnam
| | - Lan Thi Nguyen
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | - Joo Young Lee
- ChoongAng Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Phan Van Le
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam.
| | - Chanhee Chae
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|