1
|
López LF, Gade L, Litvintseva AP, Sexton DJ. Evaluation of a multiplex real-time PCR targeting the β-tubulin gene for the detection and differentiation of Sporothrix schenckii and Sporothrix brasiliensis. Microbiol Spectr 2024; 12:e0116224. [PMID: 39436137 PMCID: PMC11619315 DOI: 10.1128/spectrum.01162-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Sporothrix sp. is a thermally dimorphic genus of fungi known to cause subacute or chronic subcutaneous lesions in humans and animals and is the cause of increasing public health concern due to spread of feline-associated cases. Here, we adapted and evaluated a recently described real-time PCR assay targeting the β-tubulin gene to rapidly detect and differentiate two related species, S. schenckii and S. brasiliensis. The assay was tested with 55 S. brasiliensis, 19 S. schenckii, and 85 isolates from other clinically relevant fungi, and showed 100% concordance with reference identification methods. The assay showed high analytical sensitivity with a limit of detection of 1 pg of DNA per microliter of sample for both targets. The assay was further evaluated with 11 fresh and 17 formalin-fixed, paraffin-embedded (FFPE) tissues. This multiplex real-time PCR assay successfully detected the DNA from both S. brasiliensis and S. schenckii isolates as well as S. schenckii from fresh and FFPE tissues. Our results demonstrate this assay performs well and could be a helpful molecular tool to support rapid species identification in cultures and primary specimens.IMPORTANCEHaving available molecular tools to identify and differentiate closely related species will allow clinical, veterinarians, and public health labs to provide diagnostic results with accuracy and short turnaround time for the routine and outbreak response activities.
Collapse
Affiliation(s)
- Luisa F. López
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - D. Joseph Sexton
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
García-Martín JM, Muro A, Fernández-Soto P. Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods. J Fungi (Basel) 2024; 10:637. [PMID: 39330397 PMCID: PMC11432851 DOI: 10.3390/jof10090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.
Collapse
Affiliation(s)
- Joaquina María García-Martín
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (A.M.); (P.F.-S.)
| | | | | |
Collapse
|
3
|
Alvarez CM, Oliveira MME, Pires RH. Sporotrichosis: A Review of a Neglected Disease in the Last 50 Years in Brazil. Microorganisms 2022; 10:2152. [PMID: 36363744 PMCID: PMC9695284 DOI: 10.3390/microorganisms10112152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/15/2023] Open
Abstract
Sporotrichosis is caused by fungi belonging to the genus Sporothrix, which saprophytically are found in plants and organic matter. However, cats are highly susceptible to contamination with fungal spores and, when they become sick, they can transmit it to other animals and to man. The objective of this study is to carry out a systematic review on the emergency, diagnosis, clinical symptoms, therapeutics, and control of zoonotic sporotrichosis. Published data covering the last 50 years using a combination of keywords were selected to answer the question: Why has the zoonotic sporotrichosis been a neglected disease up to now? A total of 135 studies were included in this review. The studies emphasize that in recent decades, Brazil has experienced an unprecedented zoonotic outbreak of sporotrichosis. Advances on the genus Sporothrix allowed one to associate thermotolerance, capacity for melanin synthesis, potential for adhesion to tissue macromolecules, ergosterol peroxide production, and expression of virulence proteins as tools for infection and invasion in S. brasiliensis, the main species involved, although cases with S. schenckii or S. lurei were also reported. Correct diagnosis, early treatment, basic educational measures that emphasize responsible ownership of animals and reproductive control programs for felines can contribute to the control of zoonosis.
Collapse
Affiliation(s)
- Carmen Magaly Alvarez
- Laboratory of Mycology and Environmental Diagnosis, Postgraduate Program in Health Promotion, University of Franca, Franca 14404-600, SP, Brazil
- Faculty of Veterinary Medicine, Universidad Agraria del Ecuador, Guayaquil 090104, Ecuador
| | | | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, Postgraduate Program in Health Promotion, University of Franca, Franca 14404-600, SP, Brazil
| |
Collapse
|
4
|
An automated system for nucleic acid extraction from formalin-fixed paraffin-embedded samples using high intensity focused ultrasound technology. Anal Bioanal Chem 2022; 414:8201-8213. [PMID: 36260128 DOI: 10.1007/s00216-022-04360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue samples are routinely used in prospective and retrospective studies. It is crucial to obtain high-quality nucleic acid (NA) from FFPE samples for downstream molecular analysis, such as quantitative polymerase chain reaction (PCR), Sanger sequencing, next-generation sequencing, and microarray, in both clinical diagnosis and basic research. The current NA extraction methods from FFPE samples using chemical solvent are tedious, environmentally unfriendly, and unamenable to automation or field deployment. We present a tool for NA extraction from FFPE samples using a high-intensity focused ultrasound (HIFU) technology. A cartridge strip containing reagents for FFPE sample deparaffinization and NA extraction and purification is operated by an automation tool consisting of a HIFU module, a liquid handling robot unit, and accessories including a thermal block and magnets. The HIFU module is a single concaved piezoelectric ceramic plate driven by a current-mode class-D power amplifier. Based on the ultrasonic cavitation effects, the HIFU module provides highly concentrated energy introducing paraffin emulsification and disintegration. The high quantity and quality of NA extracted using the reported system are evaluated by PCR and compared with the quantity and quality of NA extracted using the current standard methods.
Collapse
|
5
|
de Carvalho JA, Monteiro RC, Hagen F, de Camargo ZP, Rodrigues AM. Trends in Molecular Diagnostics and Genotyping Tools Applied for Emerging Sporothrix Species. J Fungi (Basel) 2022; 8:jof8080809. [PMID: 36012797 PMCID: PMC9409836 DOI: 10.3390/jof8080809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Sporotrichosis is the most important subcutaneous mycosis that affects humans and animals worldwide. The mycosis is caused after a traumatic inoculation of fungal propagules into the host and may follow an animal or environmental transmission route. The main culprits of sporotrichosis are thermodimorphic Sporothrix species embedded in a clinical clade, including S. brasiliensis, S. schenckii, S. globosa, and S. luriei. Although sporotrichosis occurs worldwide, the etiological agents are not evenly distributed, as exemplified by ongoing outbreaks in Brazil and China, caused by S. brasiliensis and S. globosa, respectively. The gold standard for diagnosing sporotrichosis has been the isolation of the fungus in vitro. However, with the advance in molecular techniques, molecular assays have complemented and gradually replaced the classical mycological tests to quickly and accurately detect and/or differentiate molecular siblings in Sporothrix. Nearly all techniques available for molecular diagnosis of sporotrichosis involve PCR amplification, which is currently moving towards detecting Sporothrix DNA directly from clinical samples in multiplex qPCR assays. From an epidemiological perspective, genotyping is key to tracing back sources of Sporothrix infections, detecting diversity in outbreak areas, and thus uncovering finer-scale epidemiological patterns. Over the past decades, molecular epidemiological studies have provided essential information to policymakers regarding outbreak management. From high-to-low throughput genotyping methods, MLSA, AFLP, SSR, RAPD, PCR-RFLP, and WGS are available to assess the transmission dynamics and sporotrichosis expansion. This review discusses the trends in the molecular diagnosis of sporotrichosis, genotyping techniques applied in molecular epidemiological studies, and perspectives for the near future.
Collapse
Affiliation(s)
- Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ruan Campos Monteiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (J.A.d.C.); (R.C.M.); (Z.P.d.C.)
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
- Correspondence: ; Tel.: +55-1155764551 (ext. 1540)
| |
Collapse
|