1
|
Attia SL, Odhiambo SA, Mogaka JN, Ondondo R, Schadler A, McQuerry K, Fuchs GJ, Williams JE, McGuire MK, Waterman C, Schulze K, Owuor PM. Impact of Maternal Moringa oleifera Leaf Supplementation on Milk and Serum Vitamin A and Carotenoid Concentrations in a Cohort of Breastfeeding Kenyan Women and Their Infants. Nutrients 2024; 16:3425. [PMID: 39408390 PMCID: PMC11478761 DOI: 10.3390/nu16193425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Childhood vitamin A deficiency leads to increased morbidity and mortality. Human milk is the only source of vitamin A for exclusively breastfed infants. Dried Moringa oleifera leaf powder (moringa) is a good food source of provitamin A and other carotenoids. Its effect during lactation on human milk vitamin A and carotenoid content is unclear. Objectives: Our objective was to investigate the effect of maternal moringa consumption on human milk retinol and carotenoid concentrations and maternal and infant vitamin A status. Methods: We conducted a 3-month pilot single-blinded cluster-randomized controlled trial in breastfeeding mother-infant pairs (n = 50) in Kenya. Mothers received corn porridge with (20 g/d) or without moringa with complete breast expressions and maternal and infant serum collected at enrollment (infant <30 days old) and 3 months. Milk was analyzed for retinol and selected carotenoids; maternal/infant serum was analyzed for retinol binding protein (RBP). Results: 88% (n = 44) pairs completed milk and serum samples. Four mothers (9%) had vitamin A deficiency (RBP <0.07 µmol/L); 11 (25%) were vitamin A insufficient (VAI; RBP <1.05 µmol/L). Alpha-carotene concentration in milk was higher in the moringa than the control group at baseline (p = 0.024) and at exit (least squares means, LSM, 95%CI µg/mL 0.003, 0.003-0.004 moringa vs. 0.002, 0.001-0.003 control, n = 22/cluster; p = 0.014). In mothers with VAI, alpha-carotene was higher in the moringa group than controls at exit (LSM, 95%CI µg/mL 0.005, 0.003-0.009 moringa, n = 3, vs. 0.002, 0.000-0.004 control, n = 8, p = 0.027) with no difference at baseline. Milk carotenoids did not correlate with vitamin A status (serum RBP) in infants or mothers. Conclusions: Maternal moringa consumption did not impact concentration of milk vitamin A and resulted in limited increase in milk carotenoids in this cohort.
Collapse
Affiliation(s)
- Suzanna Labib Attia
- Department of Pediatrics, University of Kentucky, Lexington, KY 40506, USA; (A.S.); (G.J.F.III)
| | - Silvia A. Odhiambo
- Pamoja Community Based Organization, Kisumu 2311-40100, Kenya; (S.A.O.); (P.M.O.)
- School of Public Health, University of Alberta, Edmonton, AB T6G 2E2, Canada;
| | - Jerusha N. Mogaka
- School of Public Health, University of Alberta, Edmonton, AB T6G 2E2, Canada;
- School of Nursing, University of Washington, Seattle, WA 98195, USA
| | - Raphael Ondondo
- Masinde Muliro University of Science and Technology, Kakamega P.O. Box 190-50100, Kenya;
| | - Aric Schadler
- Department of Pediatrics, University of Kentucky, Lexington, KY 40506, USA; (A.S.); (G.J.F.III)
| | - Kristen McQuerry
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40506, USA;
| | - George J. Fuchs
- Department of Pediatrics, University of Kentucky, Lexington, KY 40506, USA; (A.S.); (G.J.F.III)
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Carrie Waterman
- Institute for Global Nutrition, University of California Davis, Davis, CA 95616, USA;
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Patrick M. Owuor
- Pamoja Community Based Organization, Kisumu 2311-40100, Kenya; (S.A.O.); (P.M.O.)
- Department of Anthropology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
2
|
Bolat E, Sarıtaş S, Duman H, Eker F, Akdaşçi E, Karav S, Witkowska AM. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024; 16:2550. [PMID: 39125431 PMCID: PMC11314462 DOI: 10.3390/nu16152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Polyphenols are natural compounds which are plant-based bioactive molecules, and have been the subject of growing interest in recent years. Characterized by multiple varieties, polyphenols are mostly found in fruits and vegetables. Currently, many diseases are waiting for a cure or a solution to reduce their symptoms. However, drug or other chemical strategies have limitations for using a treatment agent or still detection tool of many diseases, and thus researchers still need to investigate preventive or improving treatment. Therefore, it is of interest to elucidate polyphenols, their bioactivity effects, supplementation, and consumption. The disadvantage of polyphenols is that they have a limited bioavailability, although they have multiple beneficial outcomes with their bioactive roles. In this context, several different strategies have been developed to improve bioavailability, particularly liposomal and nanoparticles. As nutrition is one of the most important factors in improving health, the inclusion of plant-based molecules in the daily diet is significant and continues to be enthusiastically researched. Nutrition, which is important for individuals of all ages, is the key to the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (E.B.); (S.S.); (H.D.); (F.E.); (E.A.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Bialystok Medical University, 15-089 Bialystok, Poland
| |
Collapse
|
3
|
El-Sherbiny HR, Samir H, Youssef FS, Mohamed GG, Ismail SH, El-Shahat KH, Aboelmaaty AM, Mahrous KF, Al Syaad KM, Ahmed AE, Al-Saeed FA, Abduallah AM, Abdelnaby EA. Maternal supplementation of curcumin-olive oil nanocomposite improves uteroplacental blood flow, placental growth and antioxidant capacity in goats. J Anim Physiol Anim Nutr (Berl) 2024; 108:839-853. [PMID: 38323934 DOI: 10.1111/jpn.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
This experiment was designed to investigate the impact of curcumin-olive oil nanocomposite (CONC) supplementation on uteroplacental hemodynamics and ultrasonographic measurements as well as maternal oxidative status in midgestating goats. Twelve synchronized pregnant goats (85.58 ± 1.08 days of gestation; mean ± SD) were uniformly assigned to two groups (n = 6/group); the first group received daily oral supplementation of CONC (3 mg/kg body weight; nanocurcumin [NC] group) for 32 days, and the second group was offered physiological saline (control) following the NC group timeline. The goats of both groups were examined at 3-day intervals for middle uterine (MUA) and umbilical (UMA) arteries hemodynamics (pulsatility index [PI], resistive index [RI], systole/diastole [S/D] and blood flow rate [BFR]) and diameters, uteroplacental thickness (UPT), placentomes' diameter (PD) and echogenicity, steroid hormones (progesterone and estradiol 17β), oxidative biomarkers (total antioxidant capacity [TAC], catalase [CAT], malondialdehyde [MDA]), nitric oxide (NO) and blood cells DNA integrity. The UPT (p = 0.012) and PD (p = 0.021) values were higher in the NC group than in their counterparts' control group (D11-32). There were increases in diameter (p = 0.021 and p = 0.012) and decreases (p = 0.021, p = 0.016 and p = 0.041 [MUA]; p = 0.015, p = 0.023 and p = 0.011 [UMA] respectively) in Doppler indices (PI, RI and S/D) of the MUA and UMA in the NC group compared to the control group (D14-32). On D20-32 (MUA) and D14-32 (UMA), the NC goats had higher BFR than the control group (p = 0.021, 0.018 respectively). The means of blood cells with fragmented DNA were lower (p = 0.022) in the NC group than in the control group on Days 8 and 21 postsupplementation. There were increases in CAT and NO (D20-32; p = 0.022 and p = 0.004 respectively), and TAC (D17-32; p = 0.007) levels in the NC goats compared to the control ones. The NC group had lower (p = 0.029) concentrations of MDA than the control group on Day 20 postsupplementation onward. In conclusion, oral supplementation of CONC improved uteroplacental blood flow and the antioxidant capacity of midgestating goats.
Collapse
Affiliation(s)
- Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Haney Samir
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gehad G Mohamed
- Inorganic and Analytical Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Egypt
| | - Khaled H El-Shahat
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Amal M Aboelmaaty
- Animal Reproduction and Artificial Insemination Department, National Research Centre, Veterinary Research Institute, Dokki, Egypt
| | - Karima F Mahrous
- Cell Biology Department, National Research Centre, Biotechnology Research Institute, Cairo, Egypt
| | - Khalid M Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatimah A Al-Saeed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Elshymaa A Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Clinical Sciences, King Faisal University, Alahsa, Saudi Arabia
| |
Collapse
|
4
|
Kelleher SL, Burkinshaw S, Kuyooro SE. Polyphenols and Lactation: Molecular Evidence to Support the Use of Botanical Galactagogues. Mol Nutr Food Res 2024; 68:e2300703. [PMID: 38676329 DOI: 10.1002/mnfr.202300703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκβ) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Serena Burkinshaw
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Seun Elizabeth Kuyooro
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
5
|
Zhang Y, Usman S, Li Q, Li F, Zhang X, Nussio LG, Guo X. Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats. J Anim Sci Biotechnol 2024; 15:9. [PMID: 38247012 PMCID: PMC10802014 DOI: 10.1186/s40104-023-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Milk synthesis in lactating animals demands high energy metabolism, which results in an increased production of reactive oxygen metabolites (ROM) causing an imbalance between oxidants and antioxidants thereby inducing oxidative stress (OS) on the animals. To mitigate OS and postpartum disorders in dairy goats and gain insight into the impact of dietary choices on redox status during lactation, a feeding trial was conducted using alfalfa silage inoculated with a high-antioxidant strain of Lactiplantibacillus plantarum. METHODS Twenty-four Guanzhong dairy goats (38.1 ± 1.20 kg) were randomly assigned to two dietary treatments: one containing silage inoculated with L. plantarum MTD/1 (RSMTD-1), and the other containing silage inoculated with high antioxidant activity L. plantarum 24-7 (ES24-7). RESULTS ES24-7-inoculated silage exhibited better fermentation quality and antioxidant activity compared to RSMTD-1. The ES24-7 diet elevated the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in milk, serum, and feces of lactating goats (with the exception of T-AOC in milk). Additionally, the diet containing ES24-7 inoculated silage enhanced casein yield, milk free fatty acid (FFA) content, and vitamin A level in the goats' milk. Furthermore, an increase of immunoglobulin (Ig)A, IgG, IgM, interleukin (IL)-4, and IL-10 concentrations were observed, coupled with a reduction in IL-1β, IL-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α concentrations in the serum of lactating goats fed ES24-7. Higher concentrations of total volatile fatty acid (VFA), acetate, and propionate were observed in the rumen fluid of dairy goats fed ES24-7 inoculated silage. Moreover, the diet containing ES24-7 inoculated silage significantly upregulated the expression of nuclear factor erythroid 2 like 2 (NFE2L2), beta-carotene oxygenase 1 (BCO1), SOD1, SOD2, SOD3, GPX2, CAT, glutathione-disulfide reductase (GSR), and heme oxygenase 1 (HMOX1) genes in the mammary gland, while decreased the levels of NADPH oxidase 4 (NOX4), TNF, and interferon gamma (IFNG). CONCLUSIONS These findings indicated that feeding L. plantarum 24-7 inoculated alfalfa silage not only improved rumen fermentation and milk quality in lactating dairy goats but also boosted their immunity and antioxidant status by modulating the expression of several genes related to antioxidant and inflammation in the mammary gland.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Qiang Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Fuhou Li
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Xia Zhang
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China
| | - Luiz Gustavo Nussio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou, 730000, PR China.
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Leitanthem VK, Chaudhary P, Maiti S, Mohini M, Mondal G. Impact of Moringa oleifera Leaves on Nutrient Utilization, Enteric Methane Emissions, and Performance of Goat Kids. Animals (Basel) 2022; 13:97. [PMID: 36611706 PMCID: PMC9817938 DOI: 10.3390/ani13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/28/2022] Open
Abstract
The development of different innovative feed resources for livestock is important to provide the essential nutrients and diminish the emission of greenhouse gases. The purpose of the present experiment was to study the response of replacing concentrate with Moringa oleifera leaves in terms of the nutrient intake, digestibility, enteric methane emissions, and performance of goat kids with a berseem-fodder-based diet under different roughage (R)-to-concentrate (C) ratios. Twenty-four goat kids (3 months of age) were distributed into four groups of six animals each, using a randomized block design (RBD). Kids of Group I (control) were fed a basal diet with 70R:30C without any tree leaf supplementation. Group II kids were fed with 60R:40C, where 10% of the concentrate mix was replaced with Moringa leaf (ML powder). In Group III, kids were fed with 70R:30C with 20% ML replacement. In Group IV, kids were fed with 80R:20C with 20% ML replacement. A metabolic trial was conducted after 180 days of feeding to assess the impact of ML on blood metabolites, antioxidant status, immunity parameters, and enteric methane emissions. The results revealed that dry matter digestibility, organic matter, and NDF were better (p < 0.05) in ML-treated kids (GII and GIII) compared to GI. Feed conversion and average daily gain were also enhanced (p < 0.05) in the treated groups as compared to controls. Total blood protein and albumin were increased in GII and GIII kids compared to GI. Plasma cholesterol levels were decreased (p < 0.001) in GII, GIII, and GIV as compared to GI. Glutathione peroxidase, catalase, and superoxide dismutase enzyme activities were also enhanced in GII, GIII, and GIV compared to controls. ML supplementation improved cell-mediated immunity and humoral immunity responses in goat kids. Enteric methane emissions decreased in the treated groups as compared to the controls. Moringa oleifera leaf may be used up to the level of 10−20% in concentrate mixes to improve digestibility, blood biochemical parameters, immunity status, and antioxidant activity in goat kids. Supplementation of ML not only enhanced the digestion and health of goat kids, but also decreased their methane emissions.
Collapse
Affiliation(s)
| | - Parul Chaudhary
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Sanjit Maiti
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Madhu Mohini
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Goutam Mondal
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
7
|
Leitanthem VK, Chaudhary P, Bhakat M, Mohini M, Mondal G. Impact of Moringa oleifera on rumen fermentation and methane emission under in vitro condition. AMB Express 2022; 12:141. [DOI: 10.1186/s13568-022-01480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractExploring innovative methods to provide essential nutrients and reducing ruminant greenhouse gas emission is crucial for animal production and diminishing global warming. This study was conducted to examine the efficacy of Moringa oleifera leaves (ML) in ruminants at 0%, 5%, 10%, 15%, 20%, 30% and 40% level in different roughage (R) and concentrate (C) (80R:20C, 70R:30C and 60R:40C) under in vitro conditions. Chemical composition of ML, concentrate mixture and berseem were estimated. Rumen fermentation parameters of male goat kids viz., total gas production, CH4, true dry matter digestibility (TDMD), organic matter digestibility (TOMD), partial fraction (PF), microbial biomass (MBP), ammonia (N), acetate, propionate, butyrate and acetate propionate ratio were observed under in vitro conditions. Results revealed that crude protein, organic matter and ethyl ether content were higher in ML as compared to concentrate mixture and berseem. Magnesium and iron content were also higher in ML as compared to concentrate and berseem. Total gas production, digestibility of DM and OM, MBP, acetate and propionate level were improved (P < 0.05) upto 10–20% replacement. In contrast, decreased in CH4 (%) and CH4 (mL/100 mg dDM) was noted with increased levels of ML incorporation. There was no change observed in ammonia, acetate: propionate ratios at all the three planes of nutrition. In this study, it is concluded that mixing Moringa oleifera leaves in feed can be used as protein supplement and reduce the methane emission without causing any effect on digestibility and rumen fermentation parameters. However, ML can be suggested for widespread practice to attain the sustainable animal production (10–20%) and to alleviate the global warming.
Collapse
|