1
|
Zhao H, Li L, Tan J, Wang Y, Zhang A, Zhao Y, Jiang L. Multi-Omics Reveals Disrupted Immunometabolic Homeostasis and Oxidative Stress in Adipose Tissue of Dairy Cows with Subclinical Ketosis: A Sphingolipid-Centric Perspective. Antioxidants (Basel) 2024; 13:614. [PMID: 38790719 PMCID: PMC11118941 DOI: 10.3390/antiox13050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ketosis, especially its subclinical form, is frequently observed in high-yielding dairy cows and is linked to various diseases during the transition period. Although adipose tissue plays a significant role in the development of metabolic disorders, its exact impact on the emergence of subclinical ketosis (SCK) is still poorly understood. The objectives of this study were to characterize and compare the profiling of transcriptome and lipidome of blood and adipose tissue between SCK and healthy cows and investigate the potential correlation between metabolic disorders and lipid metabolism. We obtained blood and adipose tissue samples from healthy cows (CON, n = 8, β-hydroxybutyric acid concentration < 1.2 mmol/L) and subclinical ketotic cows (SCK, n = 8, β-hydroxybutyric acid concentration = 1.2-3.0 mmol/L) for analyzing biochemical parameters, transcriptome, and lipidome. We found that serum levels of nonesterified fatty acids, malonaldehyde, serum amyloid A protein, IL-1β, and IL-6 were higher in SCK cows than in CON cows. Levels of adiponectin and total antioxidant capacity were higher in serum and adipose tissue from SCK cows than in CON cows. The top enriched pathways in whole blood and adipose tissue were associated with immune and inflammatory responses and sphingolipid metabolism, respectively. The accumulation of ceramide and sphingomyelin in adipose tissue was paralleled by an increase in genes related to ceramide biosynthesis, lipolysis, and inflammation and a decrease in genes related to ceramide catabolism, lipogenesis, adiponectin production, and antioxidant enzyme systems. Increased ceramide concentrations in blood and adipose tissue correlated with reduced insulin sensitivity. The current results indicate that the lipid profile of blood and adipose tissue is altered with SCK and that certain ceramide species correlate with metabolic health. Our research suggests that disruptions in ceramide metabolism could be crucial in the progression of SCK, exacerbating conditions such as insulin resistance, increased lipolysis, inflammation, and oxidative stress, providing a potential biomarker of SCK and a novel target for nutritional manipulation and pharmacological therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (H.Z.); (L.L.); (J.T.); (Y.W.); (A.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (H.Z.); (L.L.); (J.T.); (Y.W.); (A.Z.)
| |
Collapse
|
2
|
Wang H, Wu J, Hu M, Zhang H, Zhou X, Yang S, He K, Yan F, Jin H, Chen S, Zhao A. Effects of dietary supplement of ε-polylysine hydrochloride on laying performance, egg quality, serum parameters, organ index, intestinal morphology, gut microbiota and volatile fatty acids in laying hens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3069-3079. [PMID: 38072654 DOI: 10.1002/jsfa.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND ε-polylysine hydrochloride (ε-PLH) is a naturally occurring antimicrobial peptide extensively utilized in the food and medical industries. However, its impact on animal husbandry remains to be further explored. Therefore, the present study aimed to determine the effect of ε-PLH on laying hens' health and laying performance. RESULTS Dietary supplementation with ε-PLH to the diet significantly increased average egg weight during weeks 1-8. Meanwhile, compared with the control group, supplementation with ε-PLH decreased the feed egg ratio during weeks 9-12 and egg breakage rate during weeks 9-16 ,whereas it increased eggshell strength during weeks 1-4 and 13-16 . The ε-PLH 0.05% group increased yolk percentage during weeks 5-8 and yolk color during weeks 1-4 . Furthermore, ε-PLH supplementation significantly increased the concentrations of total protein, albumin, globulin and reproductive hormones estradiol, as well as decreased interleukin-1 beta and malondialdehyde in the serum. Compared with the control group, supplementation with 0.05% ε-PLH significantly increased the relative abundance of Cyanobacteria and Gastranaerophilales and decreased the abundance of Desulfovibrio and Streptococcus in the cecum microbiota. In addition, ε-PLH 0.1% supplementation also increased acetic acid content in the cecum. CONCLUSION Dietary supplementation with ε-PLH has a positive impact on both productive performance and egg quality in laying hens. Furthermore, ε-PLH can also relieve inflammation by promoting the immunity and reducing oxidative damage during egg production. ε-PLH has been shown to improve intestinal morphology, gut microbial diversity and intestinal health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Jianqing Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Moran Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Haoxin Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Ke He
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Feifei Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Hangfeng Jin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Shaojie Chen
- Zhejiang Silver-Elephant Bio-Engineering Co., Ltd, Taizhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
3
|
Chisato K, Yamazaki T, Kayasaki S, Fukumori R, Oikawa S. Epidemiological Features of Postpartum Subclinical Ketosis in Dairy Herds in Hokkaido, Japan. Animals (Basel) 2023; 14:144. [PMID: 38200875 PMCID: PMC10778376 DOI: 10.3390/ani14010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This study was carried out as an observational study in order to determine the prevalence of postpartum subclinical ketosis (SCK) in dairy herds in Hokkaido, Japan. From April 2012 to March 2014, blood β-hydroxybutyrate (BHBA) concentration was measured once within 3-88 days in milk (DIM) in 1394 apparently healthy cows from 108 farms to diagnose SCK (≥1.2 mM). In cows within 14 DIM, this was classified as SCK II, and from 15 DIM, this was classified as SCK I. Herds with a combined percentage of SCK I and SCK II of less than 10% were classified as SCK-negative herds, those with percentages of 10-25%, were classified as alert herds, and those with one of 25% or more, we classified as positive herds. The prevalence of SCK in the entire DIM was 17.6%. The prevalence of SCK II (20.2%) tended to occur more frequently than SCK I (16.5%, p = 0.094). The frequency of SCK I was higher at the fourth parity. The number of milking cows in SCK-positive herds was significantly smaller than those of the other two types of herds (p = 0.004). The frequency of SCK-positive herds in tie stalls and with component feeding was higher than for free stall or free barn and with total mixed ration (p = 0.054 and p = 0.002). This study reveals the prevalence of SCK in Hokkaido, Japan, and shows that SCK is associated with parity and the management system.
Collapse
Affiliation(s)
- Kyoko Chisato
- Veterinary Herd Health, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan; (K.C.); (R.F.)
| | - Takerou Yamazaki
- Memanbetsu Livestock Clinic, Ozora Central Branch, Okhotsk Regional Center, Hokkaido Agricultural Mutual Aid Association, 149-10 Memanbetsu Syouwa, Ozora-cho, Abashiri-gun, Hokkaido 099-2356, Japan;
| | - Shuji Kayasaki
- Teshikaga Livestock Clinic, Kushiro Central Branch, East Regional Center, Hokkaido Agricultural Mutual Aid Association, 3-10-13 Sakuraoka, Teshikaga-cho, Kawakami-gun, Hokkaido 088-3213, Japan;
| | - Rika Fukumori
- Veterinary Herd Health, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan; (K.C.); (R.F.)
| | - Shin Oikawa
- Veterinary Herd Health, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan; (K.C.); (R.F.)
| |
Collapse
|
4
|
Elshafey BG, Elfadadny A, Metwally S, Saleh AG, Ragab RF, Hamada R, Mandour AS, Hendawy AO, Alkazmi L, Ogaly HA, Batiha GES. Association between biochemical parameters and ultrasonographic measurement for the assessment of hepatic lipidosis in dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2170284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Besheer G. Elshafey
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Samy Metwally
- Department of Infectious Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa G. Saleh
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rokaia F. Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rania Hamada
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Yue Y, Li L, Tong M, Li S, Zhao Y, Guo X, Guo Y, Shi B, Yan S. Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys. Animals (Basel) 2022; 12:ani12162066. [PMID: 36009654 PMCID: PMC9405379 DOI: 10.3390/ani12162066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Donkey milk, a functional food, can be used as a milk replacement for newborn nutrition, due to its similar chemical composition to maternal breast milk and hypoallergenic property, and may be useful in the prevention of hypercholesterolemia and atherosclerosis. However, donkey milk yield is very low and cannot satisfy the demands of the market. Some research on dairy cows showed that increasing dietary crude protein levels can increase milk yield and milk component yields. Therefore, this study explored whether increasing dietary crude protein levels could promote the milk production of lactating donkeys. The results showed that increasing crude protein levels could improve milk performance and nutrient digestibility of lactating donkeys. The key finding of this study was that a diet containing 14.2% crude protein supplied adequate protein to improve milk production in lactating donkeys. Abstract Donkey milk is considered as a functional food due to its high levels of whey protein, and can be used in newborn nutrition, due to the nutritional similarities with human milk and its hypoallergenic property. However, donkey milk yield is very low and little is known about improving donkey milk yield by nutrition manipulation. The effect of dietary crude protein (CP) levels on milk production, nutrient digestibility, and serum metabolites was investigated in the current study. Twenty-four lactating donkeys were randomly assigned to one of the following three CP content diets: 15.3% (HP), 14.2% (MP), and 13.1% (LP) of dry matter, respectively. The experiment lasted for 10 weeks, with the first two weeks being used for adaptation. The results showed that milk yield and yields of protein, lactose, solid-not-fat, total solid, and contents of protein, total solid and milk urea nitrogen in the HP and MP groups were higher than the LP group. No significant changes were observed in dry-matter intake, contents of milk fat, lactose or solid-not-fat. The feed conversion ratio, milk protein synthesis efficiency, and the digestibility of dry matter, crude protein, ether extract, acid detergent fiber, neutral detergent fiber, calcium and phosphorous in the HP and MP groups were greater than the LP group. Serum total protein, albumin and urea nitrogen concentrations decreased, while concentrations of non-esterified fatty acids and β-hydroxybutyrate increased in the LP group compared with the HP and MP groups. In conclusion, the diet containing 14.2% CP supplied an adequate amount of protein for improving milk production in lactating donkeys, but milk production was not further increased by feeding the donkeys more than 14.2% CP.
Collapse
|