1
|
Morgan Bustamante BL, Chigerwe M, Martínez-López B, Aly SS, McArthur G, ElAshmawy WR, Fritz H, Williams DR, Wenz J, Depenbrock S. Antimicrobial Susceptibility in Respiratory Pathogens and Farm and Animal Variables in Weaned California Dairy Heifers: Logistic Regression and Bayesian Network Analyses. Antibiotics (Basel) 2024; 13:50. [PMID: 38247609 PMCID: PMC10812578 DOI: 10.3390/antibiotics13010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Weaned dairy heifers are a relatively understudied production group. Bovine respiratory disease (BRD) is the most common cause of antimicrobial drug (AMD) use, morbidity, and mortality in this production group. The study of antimicrobial resistance (AMR) is complicated because many variables that may affect AMR are related. This study generates hypotheses regarding the farm- and animal-level variables (e.g., vaccination, lane cleaning, and AMD use practices) that may be associated with AMR in respiratory isolates from weaned dairy heifers. A cross-sectional study was performed using survey data and respiratory isolates (Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni) collected from 341 weaned dairy heifers on six farms in California. Logistic regression and Bayesian network analyses were used to evaluate the associations between farm- and animal-level variables with minimum inhibitory concentration (MIC) classification of respiratory isolates against 11 AMDs. Farm-level variables associated with MIC classification of respiratory isolates included the number of source farms of a calf-rearing facility, whether the farm practiced onsite milking, the use of lagoon water for flush lane cleaning, and respiratory and pinkeye vaccination practices. Animal-level variables associated with a MIC classification included whether the calf was BRD-score-positive and time since the last phenicol treatment.
Collapse
Affiliation(s)
- Brittany L. Morgan Bustamante
- Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA 95616, USA
- Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Munashe Chigerwe
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Sharif S. Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Gary McArthur
- Swinging Udders Veterinarian Services, Galt, CA 95632, USA
| | - Wagdy R. ElAshmawy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Heather Fritz
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Deniece R. Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA
| | - John Wenz
- Field Disease Investigation Unit, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Sarah Depenbrock
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Sidhic J, George S, Alfarhan A, Rajagopal R, Olatunji OJ, Narayanankutty A. Phytochemical Composition and Antioxidant and Anti-Inflammatory Activities of Humboldtia sanjappae Sasidh. & Sujanapal, an Endemic Medicinal Plant to the Western Ghats. Molecules 2023; 28:6875. [PMID: 37836717 PMCID: PMC10574196 DOI: 10.3390/molecules28196875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Ethnomedicinal plants are important sources of drug candidates, and many of these plants, especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family, thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical importance. However, many Humboldtia species remain understudied in terms of their biological efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae, an underexplored plant, was investigated for the phytochemical composition of the plant, and its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed. The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin, Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover, the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase (47.60 ± 0.19µg/mL) and β-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory, antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin. Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical industries is underscored, showcasing its potential for diverse applications.
Collapse
Affiliation(s)
- Jameema Sidhic
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Satheesh George
- Phytochemistry and Pharmacology Division, PG & Research Department of Botany, St. Joseph’s College (Autonomous), Calicut 673008, India
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (R.R.)
| | | | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph’s College (Autonomous), Calicut 673008, India
| |
Collapse
|