1
|
Hu Y, Zhang W, Yang K, Lin X, Liu HC, Odle J, See MT, Cui X, Li T, Wang S, Liao X, Zhang L, Li S, Hu Y, Luo X. Dietary Zn proteinate with moderate chelation strength alleviates heat stress-induced intestinal barrier function damage by promoting expression of tight junction proteins via the A20/NF-κB p65/MMP-2 pathway in the jejunum of broilers. J Anim Sci Biotechnol 2024; 15:115. [PMID: 39217350 PMCID: PMC11366149 DOI: 10.1186/s40104-024-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The aim of this study was to determine whether and how Zn proteinate with moderate chelation strength (Zn-Prot M) can alleviate heat stress (HS)-induced intestinal barrier function damage of broilers. A completely randomized design was used for comparatively testing the effects of Zn proteinate on HS and non-HS broilers. Under high temperature (HT), a 1 (Control, HT-CON) + 2 (Zn source) × 2 (added Zn level) factorial arrangement of treatments was used. The 2 added Zn sources were Zn-Prot M and Zn sulfate (ZnS), and the 2 added Zn levels were 30 and 60 mg/kg. Under normal temperature (NT), a CON group (NT-CON) and pair-fed group (NT-PF) were included. RESULTS The results showed that HS significantly reduced mRNA and protein expression levels of claudin-1, occludin, junctional adhesion molecule-A (JAMA), zonula occludens-1 (ZO-1) and zinc finger protein A20 (A20) in the jejunum, and HS also remarkably increased serum fluorescein isothiocyanate dextran (FITC-D), endotoxin and interleukin (IL)-1β contents, serum diamine oxidase (DAO) and matrix metalloproteinase (MMP)-2 activities, nuclear factor kappa-B (NF-κB) p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum. However, dietary supplementation with Zn, especially organic Zn as Zn-Prot M at 60 mg/kg, significantly decreased serum FITC-D, endotoxin and IL-1β contents, serum DAO and MMP-2 activities, NF-κB p65 mRNA expression level, and protein expression levels of NF-κB p65 and MMP-2 in the jejunum of HS broilers, and notably promoted mRNA and protein expression levels of claudin-1, ZO-1 and A20. CONCLUSIONS Our results suggest that dietary Zn, especially 60 mg Zn/kg as Zn-Prot M, can alleviate HS-induced intestinal barrier function damage by promoting the expression of TJ proteins possibly via induction of A20-mediated suppression of the NF-κB p65/MMP-2 pathway in the jejunum of HS broilers.
Collapse
Affiliation(s)
- Yangyang Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Ke Yang
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Shengchen Wang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sufen Li
- Hebei Normal University of Science and Technology, Qinhuangdao, 066004, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
2
|
Hu P, Li K, Peng X, Yao T, Zhu C, Gu H, Liu HY, Sun MA, Hu Y, Ennab W, Luo X, Cai D. Zinc intake ameliorates intestinal morphology and oxidative stress of broiler chickens under heat stress. Front Immunol 2024; 14:1308907. [PMID: 38259441 PMCID: PMC10800777 DOI: 10.3389/fimmu.2023.1308907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Zinc (Zn), an essential trace element for poultry, plays a crucial role in promoting growth, improving feed conversion efficiency, enhancing antioxidant activity, and preventing disease. This study investigated the impact of different levels and sources of dietary Zn supplementation on the growth performance, intestinal morphology and antioxidant activity of broiler chickens under heat stress conditions. In this experiment, 1024 Xueshan chickens were divided into eight groups and subjected to heat stress conditions with different levels of Zn supplementation (30 mg/kg, 60 mg/kg, and 90 mg/kg) using organic or inorganic sources. Our findings indicated that dietary Zn supplementation significantly increased the feed-to-weight ratio of broilers during the experimental period under heat stress. Moreover, Zn supplementation positively increased the villus height and villus width in the jejunum and ileum at 74 and 88 days old, with the 60 and 90 mg/kg groups outperforming other groups, and organic Zn was more effective than inorganic Zn. Furthermore, Zn supplementation significantly increased serum antioxidant levels, with higher superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-px) activities, and organic Zn was more effective than inorganic Zn. This study concludes that Zn supplementation is beneficial in mitigating the detrimental impacts of heat stress on broilers. The findings suggest that employing Zn as a strategy can enhance productivity in the poultry industry by positively influencing intestinal morphology and bolstering antioxidant activity to counteract potential stress.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoxu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tongjia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chuyang Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haotian Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Ming-an Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wael Ennab
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Liu G, Kim WK. The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Animals (Basel) 2023; 13:2949. [PMID: 37760349 PMCID: PMC10525669 DOI: 10.3390/ani13182949] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the roles of methionine and arginine in promoting the well-being of poultry, with a specific focus on their impacts on intestinal and bone health. The metabolic pathways of methionine and arginine are elucidated, highlighting their distinct routes within the avian system. Beyond their fundamental importance in protein synthesis, methionine and arginine also exert their functional roles through their antioxidant capacities, immunomodulating effects, and involvement in the synthesis of metabolically important molecules such as S-adenosylmethionine, nitric oxide, and polyamines. These multifaceted actions enable methionine and arginine to influence various aspects of intestinal health such as maintaining the integrity of the intestinal barrier, regulating immune responses, and even influencing the composition of the gut microbiota. Additionally, they could play a pivotal role in promoting bone development and regulating bone remodeling, ultimately fostering optimal bone health. In conclusion, this review provides a comprehensive understanding of the potential roles of methionine and arginine in intestinal and bone health in poultry, thereby contributing to advancing the nutrition, overall health, and productivity of poultry in a sustainable manner.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
5
|
Chen X, He C, Zhang K, Wang J, Ding X, Zeng Q, Peng H, Bai J, Lv L, Xuan Y, Bai S. Comparison of zinc bioavailability in zinc-glycine and zinc-methionine chelates for broilers fed with a corn-soybean meal diet. Front Physiol 2022; 13:983954. [PMID: 36467690 PMCID: PMC9714021 DOI: 10.3389/fphys.2022.983954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2023] Open
Abstract
The objective of this study was to compare the bioavailability of zinc (Zn) from zinc-glycine (Zn-Gly) and zinc-methionine (Zn-Met) as compared with zinc sulfate (ZnSO4) used as a standard in broilers. A total of 1,200 one-day-old male broilers (Cobb 500) were randomly allotted to one of 10 treatments with eight replicate cages of 15 birds each. The broilers were fed a corn-soybean meal basal diet (containing 26.46 mg Zn/kg; control) or the basal diet added with 40, 80, and 120 mg Zn/kg as Zn-Gly, Zn-Met, or ZnSO4 for 14 days. The relative bioavailability value (RBV) was calculated based on multiple linear regression slope ratios of Zn concentrations in tibia and pancreas, pancreas metallothionein (MT) concentration, and pancreas MT mRNA abundance on added Zn intake. When comparing the control with all Zn-supplemented treatments, Zn addition did not significantly affect average feed intake and bodyweight gain during days 1-14 (p > 0.10). However, Zn concentrations in the tibia, pancreas, and liver and pancreas MT concentration and MT mRNA abundance increased in all Zn-supplemented treatments compared with the control (p < 0.05), and these indices increased linearly (p < 0.001) with increasing added Zn levels on days 7 and 14. The RBV of Zn as Zn-Met was similar to that as Zn-Gly or ZnSO4 (p > 0.40) on days 7 and 14, based on tibia and pancreas Zn. In contrast, on days 7 and 14, the RBVs of Zn were in the following order: Zn-Met > Zn-Gly > ZnSO4 (p < 0.05), based on pancreas MT concentration. The bioavailable Zn from Zn-Met was 1.20 or 1.25 times that from Zn-Gly on day 7 or 14, respectively, evaluated by pancreas MT content. The RBV of Zn as Zn-Met was similar to that as Zn-Gly or ZnSO4 on day 7, whereas it was higher than that as Zn-Gly or ZnSO4 on day 14, based on pancreas MT mRNA abundance. In conclusion, Zn-Met had higher bioavailable Zn than Zn-Gly for the starter broilers fed with the corn-soybean meal diet, using pancreas MT concentration as the response criterion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shiping Bai
- Animal Nutrition Institute, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Chelation of Zinc with Biogenic Amino Acids: Description of Properties Using Balaban Index, Assessment of Biological Activity on Spirostomum Ambiguum Cellular Biosensor, Influence on Biofilms and Direct Antibacterial Action. Pharmaceuticals (Basel) 2022; 15:ph15080979. [PMID: 36015127 PMCID: PMC9415815 DOI: 10.3390/ph15080979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The complexation of biogenic molecules with metals is the widespread strategy in screening for new pharmaceuticals with improved therapeutic and physicochemical properties. This paper demonstrates the possibility of using simple QSAR modeling based on topological descriptors for chelates study. The presence of a relationship between the structure (J) and lipophilic properties (logP) of zinc complexes with amino acids, where two molecules coordinate the central atom through carboxyl oxygen and amino group nitrogen, and thus form a double ring structure, was predicted. Using a cellular biosensor model for Gly, Ala, Met, Val, Phe and their complexes Zn(AA)2, we experimentally confirmed the existence of a direct relationship between logP and biological activity (Ea). The results obtained using topological analysis, Spirotox method and microbiological testing allowed us to assume and prove that the chelate complex of zinc with methionine has the highest activity of inhibiting bacterial biofilms, while in aqueous solutions it does not reveal direct antibacterial effect.
Collapse
|
7
|
Abd El-Ghany WA. A perspective review on the effect of different forms of zinc on poultry production of poultry with special reference to the hazardous effects of misuse. CABI REVIEWS 2022; 2022. [DOI: 10.1079/cabireviews202217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractZinc (Zn) is a unique micro-mineral because it is an essential component in many enzymes such as superoxide dismutase, carbonic anhydrase, and alkaline phosphatase, as well as being important for regulation of proteins and lipids metabolism, and sex hormones. This mineral is applied in poultry production in three forms; inorganic, organic, and nanoparticle form. The nano-form of Zn is preferable in application to other conventional forms with regard to absorption, bioavailability, and efficacy. Broilers fed on diets supplemented with Zn showed improvement of growth performance, carcass meat yield, and meat quality. In addition, Zn plays an important role in enhancing of both cellular and humeral immune responses, beside its antimicrobial and antioxidant activities. In laying hens, dietary addition of Zn improves the eggshell quality and the quantity of eggs. Moreover, Zn has a vital role in breeders in terms of improving the egg production, fertility, hatchability, embryonic development, and availability of the hatched chicks. Therefore, this review article is focused on the effects of using Zn on the performance and immunity of poultry, as well as its antimicrobial and antioxidant properties with special reference to the hazardous effects of the misusing of this mineral.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Address: Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|