1
|
Wang QJ, Yi HM, Ou JY, Wang R, Wang MM, Wang PH, He XL, Tang WH, Chen JH, Yu Y, Zhang CP, Ren CH, Zhang ZJ. Environmental Heat Stress Decreases Sperm Motility by Disrupting the Diurnal Rhythms of Rumen Microbes and Metabolites in Hu Rams. Int J Mol Sci 2024; 25:11161. [PMID: 39456942 PMCID: PMC11508439 DOI: 10.3390/ijms252011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Heat stress (HS) has become a common stressor, owing to the increasing frequency of extreme high-temperature weather triggered by global warming, which has seriously affected the reproductive capacity of important livestock such as sheep. However, little is known about whether HS reduces sperm motility by inducing circadian rhythm disorders in rumen microorganisms and metabolites in sheep. In this study, the year-round reproduction of two-year-old Hu rams was selected, and the samples were collected in May and July 2022 at average environmental temperatures between 18.71 °C and 33.58 °C, respectively. The experiment revealed that the mean temperature-humidity index was 86.34 in July, indicating that Hu rams suffered from HS. Our research revealed that HS significantly decreased sperm motility in Hu rams. Microbiome analysis further revealed that HS reshaped the composition and circadian rhythm of rumen microorganisms, leading to the circadian disruption of microorganisms that drive cortisol and testosterone synthesis. Serum indicators further confirmed that HS significantly increased the concentrations of cortisol during the daytime and decreased the testosterone concentration at the highest body temperature. Untargeted metabolomics analysis revealed that the circadian rhythm of rumen fluid metabolites in the HS group was enriched by the cortisol and steroid synthesis pathways. Moreover, HS downregulated metabolites, such as kaempferol and L-tryptophan in rumen fluid and seminal plasma, which are associated with promotion of spermatogenesis and sperm motility; furthermore, these metabolites were found to be strongly positively correlated with Veillonellaceae_UCG_001. Overall, this study revealed the relationship between the HS-induced circadian rhythm disruption of rumen microorganisms and metabolites and sperm motility decline. Our findings provide a new perspective for further interventions in enhancing sheep sperm motility with regard to the circadian time scale.
Collapse
Affiliation(s)
- Qiang-Jun Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Huan-Ming Yi
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Jing-Yu Ou
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Ru Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Ming-Ming Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Peng-Hui Wang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Xiao-Long He
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Wen-Hui Tang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Jia-Hong Chen
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Yang Yu
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Y.); (C.-P.Z.)
| | - Chun-Ping Zhang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Y.); (C.-P.Z.)
| | - Chun-Huan Ren
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| | - Zi-Jun Zhang
- Anhui Provincial Key Laboratory of Conservation and Germplasm Innovation of Local Livestock, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Q.-J.W.); (H.-M.Y.); (J.-Y.O.); (R.W.); (M.-M.W.); (P.-H.W.); (X.-L.H.); (W.-H.T.); (J.-H.C.)
| |
Collapse
|
2
|
Scatà MC, Alhussien MN, Grandoni F, Reale A, Zampieri M, Hussen J, De Matteis G. Hyperthermia-induced changes in leukocyte survival and phagocytosis: a comparative study in bovine and buffalo leukocytes. Front Vet Sci 2024; 10:1327148. [PMID: 38322426 PMCID: PMC10844375 DOI: 10.3389/fvets.2023.1327148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Heat stress negatively affects health, welfare, and livestock productivity by impairing immune function, increasing disease incidence. In recent years, there has been increasing interest in understanding the immune system of water buffalo due to the growing economic impact of this species for the high quality and nutritional value of buffalo milk. While there are common responses across bovine and buffalo species, there are also some species-specific variations in the physiological responses to heat stress, mainly attributed to differences in metabolism and heat dissipation efficiency. At cellular level, the exposure to thermal stress induces several anomalies in cell functions. However, there is limited knowledge about the differential response of bovine and buffalo leucocytes to early and late exposure to different degrees of thermal exposure. The aim of this study was to compare the in vitro effect of hyperthermia on apoptosis and phagocytosis in leukocytes from bovine and buffalo species. For this, whole blood samples of six bovines and nine buffaloes were incubated at 39°C (mimicking normothermia condition) or 41°C (mimicking heat stress condition) for 1, 2, and 4 h. Two flow cytometric assays were then performed to evaluate apoptosis and determine functional capacity of phagocytic cells (neutrophils and monocytes). The results showed that the viability of bovine and buffalo leukocytes was differently affected by temperature and time of in vitro exposure. A higher percentage of apoptotic leukocytes was observed in bovines than in buffaloes at 39°C (3.19 vs. 1.51, p < 0.05) and 41°C (4.01 vs. 1.69, p < 0.05) and for all incubation time points (p < 0.05). In contrast, no difference was observed in the fraction of necrotic leukocytes between the two species. In both species, lymphocytes showed the highest sensitivity to hyperthermia, showing an increased apoptosis rates along with increased incubation time. In bovine, apoptotic lymphocytes increased from 5.79 to 12.7% at 39°C (p < 0.05), in buffalo, this population increased from 1.50 to 3.57% at 39°C and from 2.90 to 4.99% at 41°C (p < 0.05). Although no significant differences were found between the two species regarding the percentage of phagocytic neutrophils, lower phagocytosis capacity values (MFI, mean fluorescence intensity) were found in bovines compared with buffaloes at 41°C (27960.72 vs. 53676.45, p > 0.05). However, for monocytes, the differences between species were significant for both phagocytosis activity and capacity with lower percentages of bovine phagocytic monocytes after 2 h at 39°C and after 1 h at 41°C. The bovine monocytes showed lower MFI values for all temperature and time variations than buffaloes (37538.91 vs. 90445.47 at 39°C and 33752.91 vs. 70278.79 at 41°C, p < 0.05). In conclusion, the current study represents the first report on the comparative analysis of the effect of in vitro heat stress on bovine and buffalo leukocyte populations, highlighting that the leukocytes of buffalo exhibit relatively higher thermal adaptation than bovine cells.
Collapse
Affiliation(s)
- Maria Carmela Scatà
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Mohanned Naif Alhussien
- Reproductive Biotechnology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Francesco Grandoni
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Faculty of Medicine and Dentistry, Sapienza University of Rome, Rome, Italy
| | - Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Giovanna De Matteis
- Research Centre for Animal Production and Aquaculture, Council for Agricultural Research and Economics (CREA), Rome, Italy
| |
Collapse
|
3
|
Ben Moula A, Moussafir Z, Hamidallah N, El Amiri B. Heat stress and ram semen production and preservation: Exploring impacts and effective strategies. J Therm Biol 2024; 119:103794. [PMID: 38330855 DOI: 10.1016/j.jtherbio.2024.103794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
As global warming persists, heat stress (HS) continues to affect animals, particularly those raised in extensive systems such as sheep. As a result, there is a growing body of research investigating the physiological and biological consequences of HS on these animals. Recent studies have specifically examined the effects of climate change, global warming, and HS on gametes. Heat stress has been shown to affect ram semen production, resulting in decreased sperm quality and volume in both fresh and stored samples. This is attributed to the effect of heat on hormone production in the testicles, which is critical for successful spermatogenesis. Such effects can have significant consequences on the fertility of female sheep, which could affect the farmers' revenue. Therefore, farmers and researchers are utilizing various strategies and laboratory techniques to mitigate these negative effects. This review aims to comprehensively evaluate the impact of HS on ram semen production and conservation and analyze the different mitigation strategies at various levels, including management and nutritional interventions. The findings of this review will serve as a critical foundation for the development of targeted interventions and sustainable practices in sheep farming, ensuring resilient and profitable operations in the face of ongoing global climate challenges.
Collapse
Affiliation(s)
- Anass Ben Moula
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, 745 BP, 92004, Larache, Morocco.
| | - Zineb Moussafir
- Faculty of Science and Technology, Errachidia, Moulay Ismail University, Meknes, Morocco
| | - Naima Hamidallah
- Faculty of Science and Technology, Hassan 1 University, BP 577, 26000, Settat, Morocco
| | - Bouchra El Amiri
- INRA-Regional Center for Agronomic Research of Settat, BP589, Settat, Morocco; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), 70000, Laayoune, Morocco
| |
Collapse
|
4
|
Li J, Zhao W, Zhu J, Wang S, Ju H, Chen S, Basioura A, Ferreira-Dias G, Liu Z. Temperature Elevation during Semen Delivery Deteriorates Boar Sperm Quality by Promoting Apoptosis. Animals (Basel) 2023; 13:3203. [PMID: 37893927 PMCID: PMC10603671 DOI: 10.3390/ani13203203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Semen delivery practice is crucial to the efficiency of artificial insemination using high-quality boar sperm. The present study aimed to evaluate the effect of a common semen delivery method, a Styrofoam box, under elevated temperatures on boar sperm quality and functionality and to investigate the underlying molecular responses of sperm to the temperature rise. Three pooled semen samples from 10 Duroc boars (3 ejaculates per boar) were used in this study. Each pooled semen sample was divided into two aliquots. One aliquot was stored at a constant 17 °C as the control group. Another one was packaged in a well-sealed Styrofoam box and placed in an incubator at 37 °C for 24 h to simulate semen delivery on hot summer days and subsequently transferred to a refrigerator at 17 °C for 3 days. The semen temperature was continuously monitored. The semen temperature was 17 °C at 0 h of storage and reached 20 °C at 5 h, 30 °C at 14 h, and 37 °C at 24 h. For each time point, sperm quality and functionality, apoptotic changes, expression levels of phosphorylated AMPK, and heat shock proteins HSP70 and HSP90 were determined by CASA, flow cytometry, and Western blotting. The results showed that elevated temperature during delivery significantly deteriorated boar sperm quality and functionality after 14 h of delivery. Storage back to 17 °C did not recover sperm motility. An increased temperature during delivery apparently promoted the conversion of sperm early apoptosis to late apoptosis, showing a significant increase in the expression levels of Bax and Caspase 3. The levels of phosphorylated AMPK were greatly induced by the temperature rise to 20 °C during delivery but reduced thereafter. With the temperature elevation, expression levels of HSP70 and HSP90 were notably increased. Our results indicate that a temperature increase during semen delivery greatly damages sperm quality and functionality by promoting sperm apoptosis. HSP70 and HSP90 could participate in boar sperm resistance to temperature changes by being associated with AMPK activation and anti-apoptotic processes.
Collapse
Affiliation(s)
- Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuaibiao Wang
- DanAg Agritech Consulting (Zhengzhou) Co., Ltd., Zhengzhou 450000, China;
- Royal Veterinary College, London NW1 0TU, UK
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Science, Ningbo 315040, China;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Bui-Le TN, Hoang-Tan Q, Hoang-Viet H, Truong-Thi BP, Nguyen-Thanh T. Protective Effect of Curculigo orchioides Gaertn. Extract on Heat Stress-Induced Spermatogenesis Complications in Murine Model. Curr Issues Mol Biol 2023; 45:3255-3267. [PMID: 37185736 PMCID: PMC10136419 DOI: 10.3390/cimb45040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Curculigo orchioides Gaertn. is a precious herb used in traditional medicine systems in Asian countries for various health benefits. This study investigated the potential protective effects of C. orchioides extract on reproductive health under heat stress conditions in male mice. Forty-eight mice were divided into eight groups, control condition (C group), C. orchioides extract at the dosages of 100, 200, and 400 mg/kg/day (C100, C200, C400 group), 40 °C heat exposure (H group), and combined 40 °C heat exposure and C. orchioides extract at the dosages of 100, 200, and 400 mg/kg/day (HC100, HC200, HC400 group). The result shows that the mice that received only C. orchioides extract without heat stress do not have a significant change in histological structure and testosterone level. The histological analysis of testicular tissue showed that heat stress conditions reduced reproductive function and inhibited the spermatogenesis of male mice. The C. orchioides rhizome extract treatment attenuated the heat stress-induced spermatogenesis complications in the murine model. Mice in the heat-stress group treated with C. orchioides extract had increased spermatogenic cells and spermatozoa compared with mice exposed to heat without C. orchioides treatment. Moreover, the aqueous extract of C. orchioides rhizome enhanced the serum total testosterone levels in heat-exposed mice. In conclusion, the study findings validate that C. orchioides is effective against heat stress-induced spermatogenesis complications in the murine model.
Collapse
Affiliation(s)
- Thanh-Nhan Bui-Le
- Faculty of Basic Science, University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam
- Faculty of Biology, University of Sciences, Hue University, Hue 49000, Vietnam
| | - Quang Hoang-Tan
- Institute of Biotechnology, Hue University, Hue 49000, Vietnam
| | - Huong Hoang-Viet
- Thua Thien Hue Department of Science and Technology, Hue 49000, Vietnam
| | | | - Tung Nguyen-Thanh
- Faculty of Basic Science, University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam
- Institute of Biomedicine, University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam
| |
Collapse
|