1
|
Wang L, Haq SU, Shoaib M, He J, Guo W, Wei X, Zheng X. Subclinical Mastitis in Small-Holder Dairy Herds of Gansu Province, Northwest China: Prevalence, Bacterial Pathogens, Antimicrobial Susceptibility, and Risk Factor Analysis. Microorganisms 2024; 12:2643. [PMID: 39770845 PMCID: PMC11727839 DOI: 10.3390/microorganisms12122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
This cross-sectional study assessed the prevalence, bacterial distribution, antimicrobial susceptibility, and potential risk factors associated with subclinical mastitis (SCM) in small-holder dairy herds in Gansu Province, Northwest China. Forty small-holder cow farms were randomly selected from eight cities/counties in six districts of Gansu Province, and a total of n = 530 lactating cows were included in this study. SCM prevalence was noted at 38.87% and 9.72% at the cow and quarter levels, respectively, based on the California Mastitis Test (CMT). The prevalence of the recovered bacterial species was noted as follows: S. agalactiae (36.02%), S. aureus (19.43%), coagulase-negative staphylococci (CNS) (16.11%), S. dysgalactiae (12.80%), E. coli (9.00%), and S. uberis (6.64%). All isolated bacteria were 100% multi-drug-resistant (MDR) except S. aureus (87.8% MDR). Antimicrobial susceptibility profiles revealed the increased resistance (>85%) of these pathogens to penicillin, streptomycin, trimethoprim-sulfamethoxazole, vancomycin, and erythromycin. However, these pathogens showed increased susceptibility to ampicillin, amoxicillin-sulbactam, ceftazidime, neomycin, kanamycin, spectinomycin, norfloxacin, ciprofloxacin, and doxycycline. The multivariate regression analysis demonstrated that old age, high parity, late lactation, lesions on teats, previous history of clinical mastitis, higher milk yield, and milking training were found to be potential risk factors (p < 0.001) associated with developing SCM in small-holder dairy cows in Gansu Province, China. These findings highlight the need for routine surveillance, antimicrobial stewardship, and effective preventive strategies to mitigate SCM in small-holder dairy production and their possible impacts, i.e., increased antimicrobial resistance and infection, on public health.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou 730050, China; (L.W.); (W.G.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China
| | - Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China;
| | - Muhammad Shoaib
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Jiongjie He
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou 730050, China; (L.W.); (W.G.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China
| | - Wenzhu Guo
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou 730050, China; (L.W.); (W.G.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China
| | - Xiaojuan Wei
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou 730050, China; (L.W.); (W.G.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China
| | - Xiaohong Zheng
- Key Laboratory of New Animal Drug Project, Gansu Province, Lanzhou 730050, China; (L.W.); (W.G.); (X.W.); (X.Z.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China
| |
Collapse
|
2
|
Perez-Bou L, Muñoz-Palazon B, Gonzalez-Lopez J, Gonzalez-Martinez A, Correa-Galeote D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. MICROBIAL ECOLOGY 2023; 87:14. [PMID: 38091083 DOI: 10.1007/s00248-023-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Cold environments are the most widespread extreme habitats in the world. However, the role of wastewater treatment plants (WWTPs) in the cryosphere as hotspots in antibiotic resistance dissemination has not been well established. Hence, a snapshot of the resistomes of WWTPs in cold environments, below 5 °C, was provided to elucidate their role in disseminating antibiotic resistance genes (ARGs) to the receiving waterbodies. The resistomes of two natural environments from the cold biosphere were also determined. Quantitative PCR analysis of the aadA, aadB, ampC, blaSHV, blaTEM, dfrA1, ermB, fosA, mecA, qnrS, and tetA(A) genes indicated strong prevalences of these genetic determinants in the selected environments, except for the mecA gene, which was not found in any of the samples. Notably, high abundances of the aadA, ermB, and tetA(A) genes were found in the influents and activated sludge, highlighting that WWTPs of the cryosphere are critical hotspots for disseminating ARGs, potentially worsening the resistance of bacteria to some of the most commonly prescribed antibiotics. Besides, the samples from non-disturbed cold environments had large quantities of ARGs, although their ARG profiles were highly dissimilar. Hence, the high prevalences of ARGs lend support to the fact that antibiotic resistance is a common issue worldwide, including environmentally fragile cold ecosystems.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Department of Microbiology and Virology, Faculty of Biology, University of Havana, Havana, Cuba
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
| | - Barbara Muñoz-Palazon
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Alejandro Gonzalez-Martinez
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David Correa-Galeote
- Microbiology and Environmental Technologies Section, Water Research Institute, University of Granada, Granada, Spain.
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| |
Collapse
|
3
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Pet animals as reservoirs for spreading methicillin-resistant Staphylococcus aureus to human health. J Adv Vet Anim Res 2023; 10:1-13. [PMID: 37155545 PMCID: PMC10122942 DOI: 10.5455/javar.2023.j641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 05/10/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a strain of pathogenic bacteria that is a major problem in the world's health. Due to their frequent interaction with humans, pets are one of the main risk factors for the spread of MRSA. The possibility for zoonotic transmission exists since frequently kept dogs and cats are prone to contract MRSA and act as reservoirs for spreading MRSA. The mouth, nose, and perineum are the primary locations of MRSA colonization, according to the findings of MRSA identification tests conducted on pets. The types of MRSA clones identified in cats and dogs correlated with MRSA clones infecting humans living in the same geographic area. A significant risk factor for the colonization or transmission of MRSA is human-pet contact. An essential step in preventing the spread of MRSA from humans to animals and from animals to humans is to keep hands, clothing, and floor surfaces clean.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | |
Collapse
|