1
|
Kim SJ, Jo YJ, Jeong SH, Kim YH, Hee Han J. An investigation of antioxidative and anti-inflammatory effects of Taraxacum coreanum (white dandelion) in lactating Holstein dairy cows. J Adv Vet Anim Res 2024; 11:330-338. [PMID: 39101095 PMCID: PMC11296163 DOI: 10.5455/javar.2024.k781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The aim of this investigation was to examine the impact of Taraxacum coreanum (known as dandelion) (TC) and TC mixtures with milk thistle (MT) or Aspergillus oryzae (AO) as feed additives on the immune response, milk quality, and milk production in Holstein cows over 6 weeks of administration. Materials and Methods Thirty-two healthy Holstein dairy cows were provided 30 kg of total mixed ration (TMR) with no TC, 90 gm TC, 54 gm TC + 36 gm MT, or 54 gm TC + 36 gm AO 40% groups. The feed additives were supplied daily in two equal portions (per 45 gm) by topdressing the TMR for 6 weeks. Milk and blood samples were collected weekly. Results In the TC-treated cows (TC, TC + MT, and TC + AO groups), significantly lower peripheral blood white blood cell (WBC) counts at 6 weeks and milk somatic cell counts (SCCs) at 4-6 weeks of administration were observed. Concentrations of serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) were notably elevated in cows treated with TC for 4-6 weeks, while levels of proinflammatory cytokines concentrations of tumor necrosis factor-alpha (TNF-α) and chemokine (IL-8) were significantly reduced in TC-treated cows after 3-6 weeks of administration. Conclusion These results suggested that TC or a TC mixture with other medicinal herbs supplementations enhanced the serum antioxidative activities and, consequently, might suppress the adverse immune response due to lower serum TNF-α and IL-8 release supported by lower WBC and SCC counts.
Collapse
Affiliation(s)
- Sung Jae Kim
- Department of Companion Animal Health, Kyungbok University, Namyangju, Korea
| | - Young Jun Jo
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Sang-Hee Jeong
- Department of Biomedical Laboratory Science, College of Life and Health Science, Hoseo University, Asan, Korea
| | - Yo-Han Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| | - Jeong Hee Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
2
|
Tian Z, Zhao M, Sui X, Li X, Qin L, Chen ZJ, Zhao S, Zhao H. Associations between vaginal microbiota and endometrial polypoid lesions in women of reproductive age: a cross-sectional study. Reprod Biomed Online 2024; 48:103602. [PMID: 38101145 DOI: 10.1016/j.rbmo.2023.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/04/2023] [Accepted: 10/03/2023] [Indexed: 12/17/2023]
Abstract
RESEARCH QUESTION What are the different characteristics of vaginal microbial composition between patients with endometrial polypoid lesions and controls? DESIGN This cohort study compared the pre-operative microbial compositions of vaginal samples in a cohort of 703 women with endometrial polypoid lesions [293 and 410 women diagnosed and not diagnosed with polyps pathologically (polyps group and not-polyps group, respectively] and 703 women in the control group. Bacterial abundance, diversity, differential taxa and microbial network structure were assessed using 16S rRNA gene sequencing. Predictive algorithms were used to determine the functional pathways of vaginal microbiota within the cohort. RESULTS The control group exhibited higher relative abundance of Lactobacillus crispatus in comparison with the polypoid lesions group (P = 0.0427). Beta diversity of vaginal microbiota differed significantly between the groups (P < 0.05). Comparing the polyps group with the not-polyps group, Leptotrichia spp. and Cutibacterium spp. were more abundant in the polyps group, and Fannyhessea spp., Acinetobacter spp. and Achromobacter spp. were more abundant in the not-polyps group. The control group exhibited higher abundance of Bifidobacterium spp., Achromobacter spp. and Escherichia/Shigella spp. (false discovery rate < 0.05). Furthermore, the polyps group and not-polyps group displayed more complex co-occurrence networks compared with the control group. CONCLUSIONS The results of this study provide compelling evidence supporting associations between vaginal microbiota and endometrial polypoid lesions, highlighting the potential relationship between a well-balanced vaginal microbial ecosystem and a healthy intrauterine environment.
Collapse
Affiliation(s)
- Zhaomei Tian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Maoning Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xinlei Sui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xiao Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Lang Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Centre for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China; National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
3
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Tsuchiya Y, Chiba E, Kimura A, Kawashima K, Hasunuma T, Kushibiki S, Kim YH, Sato S. Predicted functional analysis of rumen microbiota suggested the underlying mechanisms of the postpartum subacute ruminal acidosis in Holstein cows. J Vet Sci 2023; 24:e27. [PMID: 37012035 PMCID: PMC10071287 DOI: 10.4142/jvs.22246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/25/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND The relationships between the postpartum subacute ruminal acidosis (SARA) occurrence and predicted bacterial functions during the periparturient period are still not clear in Holstein cows. OBJECTIVES The present study was performed to investigate the alterations of rumen fermentation, bacterial community structure, and predicted bacterial functional pathways in Holstein cows. METHODS Holstein cows were divided into the SARA (n = 6) or non-SARA (n = 4) groups, depending on whether they developed SARA during the first 2 weeks after parturition. Reticulo-ruminal pH was measured continuously during the study period. Reticulo-ruminal fluid samples were collected 3 weeks prepartum, and 2 and 6 weeks postpartum, and blood samples were collected 3 weeks before, 0, 2, 4 and 6 weeks postpartum. RESULTS The postpartum decline in 7-day mean reticulo-ruminal pH was more severe and longer-lasting in the SARA group compared with the non-SARA group. Changes in predicted functional pathways were identified in the SARA group. A significant upregulation of pathway "PWY-6383" associated with Mycobacteriaceae species was identified at 3 weeks after parturition in the SARA group. Significantly identified pathways involved in denitrification (DENITRIFICATION-PWY and PWY-7084), detoxification of reactive oxygen and nitrogen species (PWY1G-0), and starch degradation (PWY-622) in the SARA group were downregulated. CONCLUSIONS The postpartum SARA occurrence is likely related to the predicted functions of rumen bacterial community rather than the alterations of rumen fermentation or fluid bacterial community structure. Therefore, our result suggests the underlying mechanisms, namely functional adaptation of bacterial community, causing postpartum SARA in Holstein cows during the periparturient period.
Collapse
Affiliation(s)
- Yoshiyuki Tsuchiya
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Ena Chiba
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Atsushi Kimura
- Veterinary Teaching Hospital, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Kenji Kawashima
- Chiba Prefectural Livestock Research Center, Yachimata, Chiba 289-1113, Japan
| | - Toshiya Hasunuma
- Toyama Prefectural Agricultural, Forestry and Fisheries Research Center, Toyama 939-8153, Japan
| | - Shiro Kushibiki
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Large Animal Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Shigeru Sato
- Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate 020-8550, Japan
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|