1
|
Danev N, Poggi JM, Dewever EA, Bartlett AP, Oliveira L, Huntimer L, Harman RM, Van de Walle GR. Immortalized mammosphere-derived epithelial cells retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties. Stem Cell Res Ther 2024; 15:429. [PMID: 39543714 PMCID: PMC11566417 DOI: 10.1186/s13287-024-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The secretome of primary bovine mammosphere-derived epithelial cells (MDECs) has been shown to exert antimicrobial, regenerative, and immunomodulatory properties in vitro, which warrants its study as a potential biologic treatment with the potential to be translated to human medicine. Currently, the use of the MDEC secretome as a therapy is constrained by the limited life span of primary cell cultures and the decrease of secretome potency over cell passages. METHODS To address these limitations, early-passage bovine MDECs were immortalized using hTERT, a human telomerase reverse transcriptase. The primary and immortal MDECs were compared morphologically, transcriptomically, and phenotypically. The functional properties and proteomic profiles of the secretome of both cell lines were evaluated and compared. All experiments were performed with both low and high passage cell cultures. RESULTS We confirmed through in vitro experiments that the secretome of immortalized MDECs, unlike that of primary cells, maintained antimicrobial and pro-migratory properties over passages, while pro-angiogenic effects of the secretome from both primary and immortalized MDECs were lost when the cells reached high passage. The secretome from primary and immortalized MDECs, at low and high passages exerted immunomodulatory effects on neutrophils in vitro. CONCLUSIONS High passage immortalized MDECs retain a bioactive secretome with antimicrobial, regenerative, and immunomodulatory properties, suggesting they may serve as a consistent cell source for therapeutic use.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Julia M Poggi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Emilie A Dewever
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Leane Oliveira
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Lucas Huntimer
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA.
- Department of Veterinary Pathobiology, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, UK.
| |
Collapse
|
2
|
Danev N, Li G, Duan J(E, Van de Walle GR. Comparative transcriptomic analysis of bovine mesenchymal stromal cells reveals tissue-source and species-specific differences. iScience 2024; 27:108886. [PMID: 38318381 PMCID: PMC10838956 DOI: 10.1016/j.isci.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as therapeutics, but their efficacy varies due to cellular heterogeneity, which is not fully understood. After characterizing donor-matched bovine MSC from adipose tissue (AT), bone marrow (BM), and peripheral blood (PB), we performed single-cell RNA sequencing (scRNA-seq) to evaluate overarching similarities and differences across these three tissue-derived MSCs. Next, the transcriptomic profiles of the bovine MSCs were compared to those of equine MSCs, derived from the same tissue sources and previously published by our group, and revealed species-specific differences. Finally, the transcriptomic profile from bovine BM-MSCs was compared to mouse and human BM-MSCs and demonstrated that bovine BM-MSCs share more common functionally relevant gene expression profiles with human BM-MSCs than compared to murine BM-MSCs. Collectively, this study presents the cow as a potential non-traditional animal model for translational MSC studies based on transcriptomic profiles similar to human MSCs.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Guangsheng Li
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jingyue (Ellie) Duan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Danev N, Harman RM, Oliveira L, Huntimer L, Van de Walle GR. Bovine milk-derived cells express transcriptome markers of pluripotency and secrete bioactive factors with regenerative and antimicrobial activity. Sci Rep 2023; 13:12600. [PMID: 37537239 PMCID: PMC10400535 DOI: 10.1038/s41598-023-39833-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
The bovine mammary stem/progenitor cell secretome stimulates regeneration in vitro and contains proteins associated with antimicrobial defense. This has led to the exploration of the secretome as a biologic treatment for mastitis, a costly inflammation of the udder commonly caused by bacteria. This study reports on a population of bovine mammary stem/progenitor cells isolated non-invasively from milk (MiDCs). MiDCs were characterized by immunophenotyping, mammosphere formation assays, and single cell RNA sequencing. They displayed epithelial morphology, exhibited markers of mammary stem/progenitor cells, and formed mammospheres, like mammary gland tissue-isolated stem/progenitor cells. Single cell RNA sequencing revealed two sub-populations of MiDCs: epithelial cells and macrophages. Functionally, the MiDC secretome increased fibroblast migration, promoted angiogenesis of endothelial cells, and inhibited the growth of mastitis-associated bacteria, including antibiotic-resistant strains, in vitro. These qualities of MiDCs render them a source of stem cells and stem cell products that may be used to treat diseases affecting the dairy industry, including mastitis.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Leane Oliveira
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Lucas Huntimer
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA.
| |
Collapse
|