1
|
Piel RB, Veneziano SE, Nicholson EM, Walsh DP, Lomax AD, Nichols TA, Seabury CM, Schneider DA. Validation of a real-time quaking-induced conversion (RT-QuIC) assay protocol to detect chronic wasting disease using rectal mucosa of naturally infected, pre-clinical white-tailed deer (Odocoileus virginianus). PLoS One 2024; 19:e0303037. [PMID: 38870153 PMCID: PMC11175469 DOI: 10.1371/journal.pone.0303037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease of cervids spreading across North America. More effective mitigation efforts may require expansion of the available toolkit to include new methods that provide earlier antemortem detection, higher throughput, and less expense than current immunohistochemistry (IHC) methods. The rectal mucosa near the rectoanal junction is a site of early accumulation of CWD prions and is safely sampled in living animals by pinch biopsy. A fluorescence-based, 96-well format, protein-aggregation assay-the real-time quaking-induced conversion (RT-QuIC) assay-is capable of ultra-sensitive detection of CWD prions. Notably, the recombinant protein substrate is crucial to the assay's performance and is now commercially available. In this blinded independent study, the preclinical diagnostic performance of a standardized RT-QuIC protocol using a commercially sourced substrate (MNPROtein) and a laboratory-produced substrate was studied using mock biopsy samples of the rectal mucosa from 284 white-tailed deer (Odocoileus virginianus). The samples were from a frozen archive of intact rectoanal junctions collected at depopulations of farmed herds positive for CWD in the United States. All deer were pre-clinical at the time of depopulation and infection status was established from the regulatory record, which evaluated the medial retropharyngeal lymph nodes (MRPLNs) and obex by CWD-IHC. A pre-analytic sample precipitation step was found to enhance the protocol's detection limit. Performance metrics were influenced by the choice of RT-QuIC diagnostic cut points (minimum number of positive wells and assay time) and by deer attributes (preclinical infection stage and prion protein genotype). The peak overall diagnostic sensitivities of the protocol were similar for both substrates (MNPROtein, 76.8%; laboratory-produced, 73.2%), though each was achieved at different cut points. Preclinical infection stage and prion protein genotype at codon 96 (G = glycine, S = serine) were primary predictors of sensitivity. The diagnostic sensitivities in late preclinical infections (CWD-IHC positive MPRLNs and obex) were similar, ranging from 96% in GG96 deer to 80% in xS96 deer (x = G or S). In early preclinical infections (CWD-IHC positive MRPLNs only), the diagnostic sensitivity was 64-71% in GG96 deer but only 25% in xS96 deer. These results demonstrate that this standardized RT-QuIC protocol for rectal biopsy samples using a commercial source of substrate produced stratified diagnostic sensitivities similar to or greater than those reported for CWD-IHC but in less than 30 hours of assay time and in a 96-well format. Notably, the RT-QuIC protocol used herein represents a standardization of protocols from several previous studies. Alignment of the sensitivities across these studies suggests the diagnostic performance of the assay is robust given quality reagents, optimized diagnostic criteria, and experienced staff.
Collapse
Affiliation(s)
- Robert B. Piel
- U.S. Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Susan E. Veneziano
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- U.S. Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, Missoula, Montana, United States of America
- Wildlife Biology Program, University of Montana, Missoula, Montana, United States of America
| | - Aaron D. Lomax
- Department of Soil Science, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tracy A. Nichols
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, Colorado, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David A. Schneider
- U.S. Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
2
|
Kobashigawa E, Russell S, Zhang MZ, Sinnott EA, Connolly M, Zhang S. RT-QuIC detection of chronic wasting disease prion in platelet samples of white-tailed deer. BMC Vet Res 2024; 20:152. [PMID: 38654224 DOI: 10.1186/s12917-024-04005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Chronic wasting disease (CWD) is a prion disease of captive and free-ranging cervids. Currently, a definitive diagnosis of CWD relies on immunohistochemistry detection of PrPSc in the obex and retropharyngeal lymph node (RPLN) of the affected cervids. For high-throughput screening of CWD in wild cervids, RPLN samples are tested by ELISA followed by IHC confirmation of positive results. Recently, real-time quacking-induced conversion (RT-QuIC) has been used to detect CWD positivity in various types of samples. To develop a blood RT-QuIC assay suitable for CWD diagnosis, this study evaluated the assay sensitivity and specificity with and without ASR1-based preanalytical enrichment and NaI as the main ionic component in assay buffer. RESULTS A total of 23 platelet samples derived from CWD-positive deer (ELISA + /IHC +) and 30 platelet samples from CWD-negative (ELISA-) deer were tested. The diagnostic sensitivity was 43.48% (NaCl), 65.22% (NaI), 60.87% (NaCl-ASR1) or 82.61% (NaI-ASR1). The diagnostic specificity was 96.67% (NaCl), 100% (NaI), 100% (NaCl-ASR1), or 96.67% (NaI-ASR1). The probability of detecting CWD prion in platelet samples derived from CWD-positive deer was 0.924 (95% CRI: 0.714, 0.989) under NaI-ASR1 experimental condition and 0.530 (95% CRI: 0.156, 0.890) under NaCl alone condition. The rate of amyloid formation (RFA) was greatest under the NaI-ASR1 condition at 10-2 (0.01491, 95% CRI: 0.00675, 0.03384) and 10-3 (0.00629, 95% CRI: 0.00283, 0.01410) sample dilution levels. CONCLUSIONS Incorporation of ASR1-based preanalytical enrichment and NaI as the main ionic component significantly improved the sensitivity of CWD RT-QuIC on deer platelet samples. Blood test by the improved RT-QuIC assay may be used for antemortem and postmortem diagnosis of CWD.
Collapse
Affiliation(s)
- Estela Kobashigawa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
| | - Sherri Russell
- Missouri Department of Conservation, 2901 W Truman Blvd, Jefferson City, MO, USA
| | - Michael Z Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA
| | - Emily A Sinnott
- Missouri Department of Conservation, 2901 W Truman Blvd, Jefferson City, MO, USA
| | - Michael Connolly
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 67 Cyclotron Rd, Berkeley, CA, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA.
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, 901 E. Campus Loop, Columbia, MO, USA.
| |
Collapse
|
3
|
Inzalaco HN, Brandell EE, Wilson SP, Hunsaker M, Stahler DR, Woelfel K, Walsh DP, Nordeen T, Storm DJ, Lichtenberg SS, Turner WC. Detection of prions from spiked and free-ranging carnivore feces. Sci Rep 2024; 14:3804. [PMID: 38360908 PMCID: PMC10869337 DOI: 10.1038/s41598-023-44167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/04/2023] [Indexed: 02/17/2024] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious, fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting wild and captive cervids. Although experimental feeding studies have demonstrated prions in feces of crows (Corvus brachyrhynchos), coyotes (Canis latrans), and cougars (Puma concolor), the role of scavengers and predators in CWD epidemiology remains poorly understood. Here we applied the real-time quaking-induced conversion (RT-QuIC) assay to detect PrPCWD in feces from cervid consumers, to advance surveillance approaches, which could be used to improve disease research and adaptive management of CWD. We assessed recovery and detection of PrPCWD by experimental spiking of PrPCWD into carnivore feces from 9 species sourced from CWD-free populations or captive facilities. We then applied this technique to detect PrPCWD from feces of predators and scavengers in free-ranging populations. Our results demonstrate that spiked PrPCWD is detectable from feces of free-ranging mammalian and avian carnivores using RT-QuIC. Results show that PrPCWD acquired in natural settings is detectable in feces from free-ranging carnivores, and that PrPCWD rates of detection in carnivore feces reflect relative prevalence estimates observed in the corresponding cervid populations. This study adapts an important diagnostic tool for CWD, allowing investigation of the epidemiology of CWD at the community-level.
Collapse
Affiliation(s)
- H N Inzalaco
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA.
| | - E E Brandell
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA
| | - S P Wilson
- Nebraska Game and Parks Commission, 2200 N 33rd St., P.O. Box 30370, Lincoln, NE, 68503, USA
| | - M Hunsaker
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, Madison, WI, 53706, USA
| | - D R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, WY, 82190, USA
| | - K Woelfel
- Wild and Free Wildlife Rehabilitation Program, 27264 MN-18, Garrison, MN, 56450, USA
| | - D P Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| | - T Nordeen
- Nebraska Game and Parks Commission, 2200 N 33rd St., P.O. Box 30370, Lincoln, NE, 68503, USA
| | - D J Storm
- Wisconsin Department of Natural Resources, Eau Claire, WI, 54701, USA
| | - S S Lichtenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - W C Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Yilmaz G, Morrill T, Pilot W, Ward C, Mitchell G, Soutyrine A, Dan H, Lin M, Guan J. Optimization of RT-QuIC Assay Duration for Screening Chronic Wasting Disease in White-Tailed Deer. Vet Sci 2024; 11:60. [PMID: 38393078 PMCID: PMC10891863 DOI: 10.3390/vetsci11020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Real-time quaking-induced conversion (RT-QuIC) assays have become a common tool to detect chronic wasting disease (CWD) and are very sensitive provided the assay duration is sufficient. However, a prolonged assay duration may lead to non-specific signal amplification. The wide range of pre-defined assay durations in current RT-QuIC applications presents a need for methods to optimize the RT-QuIC assay. In this study, receiver operating characteristic (ROC) analysis was applied to optimize the assay duration for CWD screening in obex and retropharyngeal lymph node (RLN) tissue specimens. Two different fluorescence thresholds were used: a fixed threshold based on background fluorescence (Tstdev) and a max-point ratio (maximum/background fluorescence) threshold (TMPR) to determine CWD positivity. The optimal assay duration was 33 h for obex and 30 h for RLN based on Tstdev, and 29 h for obex and 32 h for RLN based on TMPR. The optimized assay durations were then evaluated for screening CWD in white-tailed deer from an affected farm. At a replicate level, using the optimized assay durations with TStdev and TMPR, the level of agreement with enzyme-linked immunosorbent assay (ELISA) was significantly higher (p < 0.05) than that when using a 40 h assay duration. These findings demonstrate that the optimization of assay duration via a ROC analysis can improve RT-QuIC assays for screening CWD in white-tailed deer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiewen Guan
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada
| |
Collapse
|
5
|
Bravo-Risi F, Soto P, Benavente R, Nichols TA, Morales R. Dynamics of CWD prion detection in feces and blood from naturally infected white-tailed deer. Sci Rep 2023; 13:20170. [PMID: 37978207 PMCID: PMC10656452 DOI: 10.1038/s41598-023-46929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease affecting cervids. Confirmatory testing of CWD is currently performed postmortem in obex and lymphoid tissues. Extensive evidence demonstrates the presence of infectious prions in feces of CWD-infected deer using in vitro prion-amplification techniques and bioassays. In experimental conditions, this has been achieved as soon as 6-month post-inoculation, suggesting this sample type is a candidate for antemortem diagnosis. In the present study, we optimized the detection of CWD-prions in fecal samples from naturally infected, pre-clinical white-tailed deer by comparing protocols aiming to concentrate CWD-prions with direct spiking of the sample into the PMCA reactions. Results of this screening were compared with similar analyses made in blood. Our data shows that CWD-prion detection in feces using PMCA is best in the absence of sample pre-treatments. We performed a screening of 169 fecal samples, detecting CWD-prions with diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively. In addition, the PMCA seeding activity of 76 fecal samples was compared with that on blood of matched deer. Our findings, demonstrate that CWD-prions in feces and blood are increased at late pre-clinical stages, exhibiting similar detection in both sample types (> 90% sensitivity) when PrP96GG animals are tested. Our findings contribute to understand prion distribution across different biological samples and polymorphic variants in white-tailed deer. This information is also relevant for the current efforts to identify platforms to diagnose CWD.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Tracy A Nichols
- Veterinary Services Cervid Health Program, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|