1
|
Prabhakar YK, Skariah S, Shanmugam G, Shome R. Molecular epidemiology, immunobiology, genomics and proteomics insights into bovine brucellosis. Vet Microbiol 2025; 305:110505. [PMID: 40233684 DOI: 10.1016/j.vetmic.2025.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Brucella species are intracellular Gram-negative bacteria that cause brucellosis, a global zoonosis that impacts cattle productivity and public health. Both cattle and buffaloes are susceptible to bovine brucellosis, which can lead to severe degenerative changes in uterine mucosa of non-pregnant animals, including ulcerative endometritis and fibrosis. Vasculitis, localized coagulative necrosis, and ulceration of the uterine mucosa have all been reported in pregnant animals. Male testicles get inflamed due to Brucella, which results in infertility. This review article covers the molecular epidemiology, pathophysiology, immunobiology, genomics, and proteomics of Brucella, with an emphasis on novel discoveries and more recent research, especially on bovine brucellosis. The integration of molecular pathology and sero-prevalence data provide the insights into epidemiology, transmission dynamics, and genetic diversity of bovine brucellosis. The immunobiological response studies of brucellosis have provided insights into the tactics employed by Brucella to infect host cells and elude immune responses. Proteomics was utilized to find biomarkers for both acute and chronic brucellosis, which resulted in the identification of proteins with differential expression linked to immune response, inflammation, and extracellular matrix modulation. The genetic diversity, virulence factors, and evolution of Brucella strains were mostly investigated using genomics. The genomic makeup and architecture of Brucella isolates were examined using whole-genome sequencing, which revealed genetic markers linked to pathogenicity and drug resistance. This review provides possible treatment targets, diagnostic biomarkers, and vaccine candidates, contributing to molecular understanding of bovine brucellosis.
Collapse
Affiliation(s)
- Y K Prabhakar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Somy Skariah
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - G Shanmugam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India.
| |
Collapse
|
2
|
Almuzaini AM, Aljohani ASM, Alajaji AI, Elbehiry A, Abalkhail A, Almujaidel A, Aljarallah SN, Sherif HR, Marzouk E, Draz AA. Seroprevalence of brucellosis in camels and humans in the Al-Qassim region of Saudi Arabia and its implications for public health. AMB Express 2025; 15:22. [PMID: 39918760 PMCID: PMC11806190 DOI: 10.1186/s13568-025-01822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025] Open
Abstract
Brucellosis is a significant zoonotic disease caused by intracellular, gram-negative bacteria from the genus Brucella. Although camels are classified as secondary hosts for Brucella species, they are among the most susceptible and vulnerable animals to brucellosis, particularly Brucella abortus (B. abortus) and Brucella melitensis (B. melitensis). The present study aimed to investigate the epidemiology of camel brucellosis as a zoonotic disease by determining the seroprevalence of brucellosis in both camels and humans, assessing potential risk factors (e.g., age, size, and location), and conducting molecular characterization of Brucella spp. associated with abortion in camels. The Rose Bengal Test (RBT), Antigen Rapid Brucella Antibody Test (ARBT), indirect enzyme-linked immunosorbent assay (I-ELISA), and complement fixation test (CFT) were used to detect brucellosis in both camels and humans. Additionally, a molecular method using polymerase chain reaction was used as a confirmatory technique. A total of 625 camel serum samples and 100 human serum samples were collected in sterile vacuum tubes from various camel farms and individuals across different localities in the Al Qassim region. Additionally, samples from 10 confirmed Brucella-infected camels (including the uterus and supramammary lymph nodes) were analyzed. The results indicated that the overall prevalence of brucellosis in camel sera was 9.72%, as determined by RBT, and 8.16%, as determined by ARBT. In contrast, the overall prevalence of brucellosis in human sera from febrile patients was found to be 17% via RBT. Notably, 57.98% of camel sera that tested positive for Brucella antibodies via RBT were also positive according to I-ELISA and CFT. Furthermore, 42.1%, 70.58%, and 47.05% of human sera that were positive for Brucella antibodies as determined by RBT were also positive according to I-ELISA and CFT, respectively. The highest seropositivity for camel brucellosis was observed in female camels, particularly in the Unaizah area of the Qassim region and among the Homr breed. The prevalence of human brucellosis was highest among females and individuals who consumed raw milk. At the molecular level, B. melitensis biovar 3 was detected in the examined tissues. In conclusion, intervention measures are vital for reducing brucellosis in humans and camels. Public awareness campaigns should highlight the importance of protective clothing when handling aborted she-camels and the need to boil or pasteurize milk. Additionally, studies should differentiate between vaccinated and nonvaccinated camels, and standardizing serological tests for diagnosing brucellosis should be prioritized.
Collapse
Affiliation(s)
- Abdulaziz M Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ahmed I Alajaji
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32511, Egypt.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Sahar N Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, 13713, Dariyah, Riyadh, Saudi Arabia
| | - Hazem R Sherif
- Department of Reproductive Deseases, Animal Reproductive Research Institute, Giza, Egypt
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Abdelmaged A Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, 51452, Buraydah, Saudi Arabia
- Department of Animal Hygine and Zoonoses, Faculty of Veterinary Medicine, Amriya, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
3
|
Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A, Hasan ME. Advances in bioinformatics and multi-omics integration: transforming viral infectious disease research in veterinary medicine. Virol J 2025; 22:22. [PMID: 39891257 PMCID: PMC11783962 DOI: 10.1186/s12985-025-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
The world is changing due to factors like bioterrorism, massive environmental changes, globalization of trade and commerce, growing urbanization, changing climate, and pollution. Numerous diseases have emerged because of these factors, especially in companion and food-producing animals. Numerous pathogens have established themselves in naïve populations, harming reproduction, productivity, and health. Bioinformatics is considered a valuable tool in infectious disease research, as it provides a comprehensive overview of the identification of pathogens, their genetic makeup, and their evolutionary relationship. Therefore, there is an urgent need for a novel bioinformatics approach to help decipher and model viral epidemiology and informatics on domestic animals and livestock. With significant advancements in bioinformatics and NGS, researchers can now identify contigs, which are contiguous sequences of DNA that are assembled from overlapping fragments, assemble a complete genome, perform phylogenetic analysis to diagnose, investigate the risk of viral diseases in animals, handle and share large biological datasets across various species. Additionally, multi-omics data integration further deepens our understanding of homology, divergence, mutations, and evolutionary relationships, providing a comprehensive perspective on the molecular mechanisms driving animal pathogens infections. This review aims to reveal the importance of utilizing the multidisciplinary areas of bioinformatics, genomics, proteomics, transcriptomics, metabolomics, and metagenomics and their roles in studying viral infectious diseases in veterinary medicine that will eventually improve the health of animals.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt.
| | - Walid Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat, Egypt
| |
Collapse
|
4
|
Piri-Gharaghie T, Ghajari G, Rezaeizadeh G, Adil M, Mahdi MH. A novel vaccine strategy against Brucellosis using Brucella abortus multi-epitope OMPs vaccine based on Lactococcus lactis live bacterial vectors. Int Immunopharmacol 2024; 134:112204. [PMID: 38703567 DOI: 10.1016/j.intimp.2024.112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Brucella infections typically occur in mucosal membranes, emphasizing the need for mucosal vaccinations. This study evaluated the effectiveness of orally administering Lactococcus lactis (L. lactis) for producing the Brucella abortus multi-epitope OMPs peptide. A multi-epitope plasmid was generated through a reverse vaccinology method, and mice were administered the genetically modified L. lactis orally as a vaccine. The plasmid underwent digestion, synthesizing a 39 kDa-sized protein known as OMPs by the target group. The sera of mice that were administered the pNZ8124-OMPs-L. lactis vaccine exhibited a notable presence of IgG1 antibodies specific to outer membrane proteins (OMPs), heightened levels of interferon (IFN-λ) and tumor necrosis factor alpha (TNF-α), and enhanced transcription rates of interleukin 4 (IL-4) and interleukin 10 (IL-10). The spleen sections from the pNZ8124-OMPs-L. lactis and IRIBA group had less morphological damage associated with inflammation, infiltration of lymphocytes, and lesions to the spleen. The findings present a novel approach to utilizing the food-grade, non-pathogenic L. lactis as a protein cell factory to synthesize innovative immunological candidate OMPs. This approach offers a distinctive way to evaluate experimental medicinal items' practicality, safety, affordability, and long-term sustainability.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Faculty of Biological Sciences, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Ghazal Ghajari
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
5
|
Elrashedy A, Nayel M, Salama A, Zaghawa A, Abdelsalam NR, Hasan ME. Phylogenetic Analysis and Comparative Genomics of Brucella abortus and Brucella melitensis Strains in Egypt. J Mol Evol 2024; 92:338-357. [PMID: 38809331 PMCID: PMC11169049 DOI: 10.1007/s00239-024-10173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Brucellosis is a notifiable disease induced by a facultative intracellular Brucella pathogen. In this study, eight Brucella abortus and eighteen Brucella melitensis strains from Egypt were annotated and compared with RB51 and REV1 vaccines respectively. RAST toolkit in the BV-BRC server was used for annotation, revealing genome length of 3,250,377 bp and 3,285,803 bp, 3289 and 3323 CDS, 48 and 49 tRNA genes, the same number of rRNA (3) genes, 583 and 586 hypothetical proteins, 2697 and 2726 functional proteins for B. abortus and B. melitensis respectively. B. abortus strains exhibit a similar number of candidate genes, while B. melitensis strains showed some differences, especially in the SRR19520422 Faiyum strain. Also, B. melitensis clarified differences in antimicrobial resistance genes (KatG, FabL, MtrA, MtrB, OxyR, and VanO-type) in SRR19520319 Faiyum and (Erm C and Tet K) in SRR19520422 Faiyum strain. Additionally, the whole genome phylogeny analysis proved that all B. abortus strains were related to vaccinated animals and all B. melitensis strains of Menoufia clustered together and closely related to Gharbia, Dameitta, and Kafr Elshiek. The Bowtie2 tool identified 338 (eight B. abortus) and 4271 (eighteen B. melitensis) single nucleotide polymorphisms (SNPs) along the genomes. These variants had been annotated according to type and impact. Moreover, thirty candidate genes were predicted and submitted at GenBank (24 in B. abortus) and (6 in B. melitensis). This study contributes significant insights into genetic variation, virulence factors, and vaccine-related associations of Brucella pathogens, enhancing our knowledge of brucellosis epidemiology and evolution in Egypt.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
6
|
Elrashedy A, Nayel M, Salama A, Salama MM, Hasan ME. Bioinformatics approach for structure modeling, vaccine design, and molecular docking of Brucella candidate proteins BvrR, OMP25, and OMP31. Sci Rep 2024; 14:11951. [PMID: 38789443 PMCID: PMC11126717 DOI: 10.1038/s41598-024-61991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is a zoonotic disease with significant economic and healthcare costs. Despite the eradication efforts, the disease persists. Vaccines prevent disease in animals while antibiotics cure humans with limitations. This study aims to design vaccines and drugs for brucellosis in animals and humans, using protein modeling, epitope prediction, and molecular docking of the target proteins (BvrR, OMP25, and OMP31). Tertiary structure models of three target proteins were constructed and assessed using RMSD, TM-score, C-score, Z-score, and ERRAT. The best models selected from AlphaFold and I-TASSER due to their superior performance according to CASP 12 - CASP 15 were chosen for further analysis. The motif analysis of best models using MotifFinder revealed two, five, and five protein binding motifs, however, the Motif Scan identified seven, six, and eight Post-Translational Modification sites (PTMs) in the BvrR, OMP25, and OMP31 proteins, respectively. Dominant B cell epitopes were predicted at (44-63, 85-93, 126-137, 193-205, and 208-237), (26-46, 52-71, 98-114, 142-155, and 183-200), and (29-45, 58-82, 119-142, 177-198, and 222-251) for the three target proteins. Additionally, cytotoxic T lymphocyte epitopes were detected at (173-181, 189-197, and 202-210), (61-69, 91-99, 159-167, and 181-189), and (3-11, 24-32, 167-175, and 216-224), while T helper lymphocyte epitopes were displayed at (39-53, 57-65, 150-158, 163-171), (79-87, 95-108, 115-123, 128-142, and 189-197), and (39-47, 109-123, 216-224, and 245-253), for the respective target protein. Furthermore, structure-based virtual screening of the ZINC and DrugBank databases using the docking MOE program was followed by ADMET analysis. The best five compounds of the ZINC database revealed docking scores ranged from (- 16.8744 to - 15.1922), (- 16.0424 to - 14.1645), and (- 14.7566 to - 13.3222) for the BvrR, OMP25, and OMP31, respectively. These compounds had good ADMET parameters and no cytotoxicity, while DrugBank compounds didn't meet Lipinski's rule criteria. Therefore, the five selected compounds from the ZINC20 databases may fulfill the pharmacokinetics and could be considered lead molecules for potentially inhibiting Brucella's proteins.
Collapse
Affiliation(s)
- Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases (Infectious Diseases), Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohammed M Salama
- Physics Department, Medical Biophysics Division, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed E Hasan
- Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
7
|
Maldonado-García JL, Alvarez-Herrera S, Pérez-Sánchez G, Becerril-Villanueva E, Pavón L, Tesoro-Cruz E, Girón-Pérez MI, Hurtado-Alvarado G, Damián-Morales G, López-Santiago R, Moreno-Lafont MC. Concomitant Treatment with Doxycycline and Rifampicin in Balb/c Mice Infected with Brucella abortus 2308 Fails to Reduce Inflammation and Motor Disability. Pharmaceuticals (Basel) 2024; 17:638. [PMID: 38794208 PMCID: PMC11123987 DOI: 10.3390/ph17050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Brucellosis is an infection widely distributed around the world, and in some countries it is considered a public health problem. Brucellosis causes insidious symptoms that make it difficult to diagnose. Infection can also trigger chronic pain and neuropsychiatric complications. Antibiotics are not always effective to eradicate infection, contributing to chronicity. We aimed to investigate the effects of antibiotic treatment on proinflammatory cytokines, neurotransmitters, corticosterone, and behavior in a murine model of infecrion of B. abortus strain 2308. Four study groups were created: (a) control; (b) antibiotic control; (c) infected with B. abortus 2308; and (d) infected and treated with rifampicin and doxycycline. We determined B. abortus 2308 colony-forming units (CFUs), the count of dendritic cells, and macrophages in the spleen; serum levels of cytokines and corticosterone; levels of serotonin, dopamine, epinephrine, and norepinephrine in the brain; and equilibrium, physical strength, anxiety, and hopelessness tests. The infected and treated mice group was compared with the control and infected mice to assess whether treatment is sufficient to recover neuroimmunoendocrine parameters. Our results showed that despite the treatment of brucellosis with rifampicin and doxycycline, antibiotic-treated mice showed a persistence of B. abortus 2308 CFUs, an increased count in macrophage number, and higher circulating levels of corticosterone. Furthermore, the levels of IL-12, IL-6, and TNF-α remained higher. We found a decrease in muscular strength and equilibrium concomitant to changes in neurotransmitters in the hippocampus, cerebellum, and frontal cortex. Our data suggest that the remaining bacterial load after antibiotic administration favors inflammatory, neurochemical, and behavioral alterations, partly explaining the widespread and paradoxical symptomatology experienced by patients with chronic brucellosis.
Collapse
Affiliation(s)
- José Luis Maldonado-García
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (G.D.-M.); (R.L.-S.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| | - Samantha Alvarez-Herrera
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City 14370, Mexico; (S.A.-H.); (G.P.-S.); (E.B.-V.)
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, IMSS, Mexico City 02990, Mexico;
| | | | - Gabriela Hurtado-Alvarado
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico;
| | - Gabriela Damián-Morales
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (G.D.-M.); (R.L.-S.)
| | - Rubén López-Santiago
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (G.D.-M.); (R.L.-S.)
| | - Martha C. Moreno-Lafont
- Laboratorio de Inmunología Celular, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.M.-G.); (G.D.-M.); (R.L.-S.)
| |
Collapse
|
8
|
Algharib SA, Dawood AS, Huang L, Guo A, Zhao G, Zhou K, Li C, Liu J, Gao X, Luo W, Xie S. Basic concepts, recent advances, and future perspectives in the diagnosis of bovine mastitis. J Vet Sci 2024; 25:e18. [PMID: 38311330 PMCID: PMC10839174 DOI: 10.4142/jvs.23147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 02/07/2024] Open
Abstract
Mastitis is one of the most widespread infectious diseases that adversely affects the profitability of the dairy industry worldwide. Accurate diagnosis and identification of pathogens early to cull infected animals and minimize the spread of infection in herds is critical for improving treatment effects and dairy farm welfare. The major pathogens causing mastitis and pathogenesis are assessed first. The most recent and advanced strategies for detecting mastitis, including genomics and proteomics approaches, are then evaluated . Finally, the advantages and disadvantages of each technique, potential research directions, and future perspectives are reported. This review provides a theoretical basis to help veterinarians select the most sensitive, specific, and cost-effective approach for detecting bovine mastitis early.
Collapse
Affiliation(s)
- Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, QG, Egypt
| | - Ali Sobhy Dawood
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Xin Gao
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Lu Zhou, Sichuan 646000, China
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang 843300, China
- Key Laboratory of Tarim Animal Husbandry & Science Technology of Xinjiang Production & Construction Corps., Alar, Xinjiang 843300, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
- The State Key Laboratory of Agricultural Microbiology, (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|