1
|
Calcini N, Silva Lantyer AD, Zeldenrust F, Celikel T. Nonlinear super-resolution signal processing allows intracellular tracking of calcium dynamics. J Neural Eng 2024; 21:036008. [PMID: 38648784 DOI: 10.1088/1741-2552/ad417c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Objective.Traditional quantification of fluorescence signals, such asΔF/F, relies on ratiometric measures that necessitate a baseline for comparison, limiting their applicability in dynamic analyses. Our goal here is to develop a baseline-independent method for analyzing fluorescence data that fully exploits temporal dynamics to introduce a novel approach for dynamical super-resolution analysis, including in subcellular resolution.Approach.We introduce ARES (Autoregressive RESiduals), a novel method that leverages the temporal aspect of fluorescence signals. By focusing on the quantification of residuals following linear autoregression, ARES obviates the need for a predefined baseline, enabling a more nuanced analysis of signal dynamics.Main result.We delineate the foundational attributes of ARES, illustrating its capability to enhance both spatial and temporal resolution of calcium fluorescence activity beyond the conventional ratiometric measure (ΔF/F). Additionally, we demonstrate ARES's utility in elucidating intracellular calcium dynamics through the detailed observation of calcium wave propagation within a dendrite.Significance.ARES stands out as a robust and precise tool for the quantification of fluorescence signals, adept at analyzing both spontaneous and evoked calcium dynamics. Its ability to facilitate the subcellular localization of calcium signals and the spatiotemporal tracking of calcium dynamics-where traditional ratiometric measures falter-underscores its potential to revolutionize baseline-independent analyses in the field.
Collapse
Affiliation(s)
- Niccolò Calcini
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, Nijmegen 6525 HJ, The Netherlands
| | - Angelica da Silva Lantyer
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, Nijmegen 6525 HJ, The Netherlands
| | - Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, Nijmegen 6525 HJ, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Heyedaalseweg 135, Nijmegen 6525 HJ, The Netherlands
- School of Psychology, Georgia Institute of Technology, 654 Cherry Street, Atlanta, GA 30332, United States of America
| |
Collapse
|
2
|
Højgaard K, Szöllősi B, Henningsen K, Minami N, Nakanishi N, Kaadt E, Tamura M, Morris RGM, Takeuchi T, Elfving B. Novelty-induced memory consolidation is accompanied by increased Agap3 transcription: a cross-species study. Mol Brain 2023; 16:69. [PMID: 37749596 PMCID: PMC10521532 DOI: 10.1186/s13041-023-01056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Novelty-induced memory consolidation is a well-established phenomenon that depends on the activation of a locus coeruleus-hippocampal circuit. It is associated with the expression of activity-dependent genes that may mediate initial or cellular memory consolidation. Several genes have been identified to date, however, to fully understand the mechanisms of memory consolidation, additional candidates must be identified. In this cross-species study, we used a contextual novelty-exploration paradigm to identify changes in gene expression in the dorsal hippocampus of both mice and rats. We found that changes in gene expression following contextual novelty varied between the two species, with 9 genes being upregulated in mice and 3 genes in rats. Comparison across species revealed that ArfGAP with a GTPase domain, an ankyrin repeat and PH domain 3 (Agap3) was the only gene being upregulated in both, suggesting a potentially conserved role for Agap3. AGAP3 is known to regulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor trafficking in the synapse, which suggests that increased transcription of Agap3 may be involved in maintaining functional plasticity. While we identified several genes affected by contextual novelty exploration, we were unable to fully reverse these changes using SCH 23390, a dopamine D1/D5 receptor antagonist. Further research on the role of AGAP3 in novelty-induced memory consolidation could lead to better understanding of this process and guide future research.
Collapse
Affiliation(s)
- Kristoffer Højgaard
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Bianka Szöllősi
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Kim Henningsen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark
| | - Natsumi Minami
- Neuroscience Research Unit, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Nobuhiro Nakanishi
- Data Science Department, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Erik Kaadt
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark
| | - Makoto Tamura
- Neuroscience Research Unit, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
- NeuroDiscovery Lab, Mitsubishi Tanabe Pharma Holdings America Inc, Cambridge, MA, 02139, USA
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Edinburgh Neuroscience, The University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Tomonori Takeuchi
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus C, DK8000, Denmark.
- Center for Proteins in Memory - PROMEMO, Department of Biomedicine, Danish National Research Foundation, Aarhus University, Aarhus C, DK8000, Denmark.
- Gftd DeSci, Gftd DAO, Tokyo, 162-0044, Japan.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical medicine, Aarhus University, Aarhus N, DK8200, Denmark.
| |
Collapse
|
3
|
Vellucci L, Ciccarelli M, Buonaguro EF, Fornaro M, D’Urso G, De Simone G, Iasevoli F, Barone A, de Bartolomeis A. The Neurobiological Underpinnings of Obsessive-Compulsive Symptoms in Psychosis, Translational Issues for Treatment-Resistant Schizophrenia. Biomolecules 2023; 13:1220. [PMID: 37627285 PMCID: PMC10452784 DOI: 10.3390/biom13081220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Almost 25% of schizophrenia patients suffer from obsessive-compulsive symptoms (OCS) considered a transdiagnostic clinical continuum. The presence of symptoms pertaining to both schizophrenia and obsessive-compulsive disorder (OCD) may complicate pharmacological treatment and could contribute to lack or poor response to the therapy. Despite the clinical relevance, no reviews have been recently published on the possible neurobiological underpinnings of this comorbidity, which is still unclear. An integrative view exploring this topic should take into account the following aspects: (i) the implication for glutamate, dopamine, and serotonin neurotransmission as demonstrated by genetic findings; (ii) the growing neuroimaging evidence of the common brain regions and dysfunctional circuits involved in both diseases; (iii) the pharmacological modulation of dopaminergic, serotoninergic, and glutamatergic systems as current therapeutic strategies in schizophrenia OCS; (iv) the recent discovery of midbrain dopamine neurons and dopamine D1- and D2-like receptors as orchestrating hubs in repetitive and psychotic behaviors; (v) the contribution of N-methyl-D-aspartate receptor subunits to both psychosis and OCD neurobiology. Finally, we discuss the potential role of the postsynaptic density as a structural and functional hub for multiple molecular signaling both in schizophrenia and OCD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry University Medical School of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
4
|
Schwabenland M, Mossad O, Sievert A, Peres AG, Ringel E, Baasch S, Kolter J, Cascone G, Dokalis N, Vlachos A, Ruzsics Z, Henneke P, Prinz M, Blank T. Neonatal immune challenge poses a sex-specific risk for epigenetic microglial reprogramming and behavioral impairment. Nat Commun 2023; 14:2721. [PMID: 37169749 PMCID: PMC10175500 DOI: 10.1038/s41467-023-38373-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
While the precise processes underlying a sex bias in the development of central nervous system (CNS) disorders are unknown, there is growing evidence that an early life immune activation can contribute to the disease pathogenesis. When we mimicked an early systemic viral infection or applied murine cytomegalovirus (MCMV) systemically in neonatal female and male mice, only male adolescent mice presented behavioral deficits, including reduced social behavior and cognition. This was paralleled by an increased amount of infiltrating T cells in the brain parenchyma, enhanced interferon-γ (IFNγ) signaling, and epigenetic reprogramming of microglial cells. These microglial cells showed increased phagocytic activity, which resulted in abnormal loss of excitatory synapses within the hippocampal brain region. None of these alterations were seen in female adolescent mice. Our findings underscore the early postnatal period's susceptibility to cause sex-dependent long-term CNS deficiencies following infections.
Collapse
Affiliation(s)
- Marius Schwabenland
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Omar Mossad
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annika Sievert
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adam G Peres
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elena Ringel
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Giulia Cascone
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikolaos Dokalis
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute for Virology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Thomas Blank
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
6
|
Diering GH. Remembering and forgetting in sleep: Selective synaptic plasticity during sleep driven by scaling factors Homer1a and Arc. Neurobiol Stress 2022; 22:100512. [PMID: 36632309 PMCID: PMC9826981 DOI: 10.1016/j.ynstr.2022.100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023] Open
Abstract
Sleep is a conserved and essential process that supports learning and memory. Synapses are a major target of sleep function and a locus of sleep need. Evidence in the literature suggests that the need for sleep has a cellular or microcircuit level basis, and that sleep need can accumulate within localized brain regions as a function of waking activity. Activation of sleep promoting kinases and accumulation of synaptic phosphorylation was recently shown to be part of the molecular basis for the localized sleep need. A prominent hypothesis in the field suggests that some benefits of sleep are mediated by a broad but selective weakening, or scaling-down, of synaptic strength during sleep in order to offset increased excitability from synaptic potentiation during wake. The literature also shows that synapses can be strengthened during sleep, raising the question of what molecular mechanisms may allow for selection of synaptic plasticity types during sleep. Here I describe mechanisms of action of the scaling factors Arc and Homer1a in selective plasticity and links with sleep need. Arc and Homer1a are induced in neurons in response to waking neuronal activity and accumulate with time spent awake. I suggest that during sleep, Arc and Homer1a drive broad weakening of synapses through homeostatic scaling-down, but in a manner that is sensitive to the plasticity history of individual synapses, based on patterned phosphorylation of synaptic proteins. Therefore, Arc and Homer1a may offer insights into the intricate links between a cellular basis of sleep need and memory consolidation during sleep.
Collapse
Affiliation(s)
- Graham H. Diering
- Department of Cell Biology and Physiology and the UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Carolina Institute for Developmental Disabilities, USA,111 Mason Farm Road, 5200 Medical and Biomolecular Research Building, Chapel Hill, NC, 27599-7545, USA.
| |
Collapse
|
7
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
8
|
Reshetnikov VV, Bondar NP. The Role of Stress-Induced Changes of Homer1 Expression in Stress Susceptibility. BIOCHEMISTRY (MOSCOW) 2021; 86:613-626. [PMID: 34225586 DOI: 10.1134/s0006297921060018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important component of the postsynaptic density: constitutively expressed long isoforms HOMER1b and HOMER1c bind to group I metabotropic glutamate receptors MGLUR1 (GRM1) and MGLUR5 and to other effector proteins, thereby forming a postsynaptic protein scaffold. Activation of the GLUR1-HOMER1b,c and/or GLUR5-HOMER1b,c complex regulates activity of the NMDA and AMPA receptors and Ca2+ homeostasis, thus modulating various types of synaptic plasticity. Dominant negative transcript Homer1a is formed as a result of activity-induced alternative termination of transcription. Expression of this truncated isoform in response to neuronal activation impairs interactions of HOMER1b,c with adaptor proteins, triggers ligand-independent signal transduction through MGLUR1 and/or MGLUR5, leads to suppression of the AMPA- and NMDA-mediated signal transmission, and thereby launches remodeling of the postsynaptic protein scaffold and inhibits long-term potentiation. The studies on animal models confirm that the HOMER1a-dependent remodeling most likely plays an important part in the stress susceptibility, whereas HOMER1a itself can be regarded as a neuroprotector. In this review article, we consider the effects of different stressors in various animal models on HOMER1 expression as well as impact of different HOMER1 variants on human behavior as well as structural and functional characteristics of the brain.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
9
|
Gray LG, Mills JD, Curry-Hyde A, Devore S, Friedman D, Thom M, Scott C, Thijs RD, Aronica E, Devinsky O, Janitz M. Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Front Genet 2020; 11:564301. [PMID: 33101384 PMCID: PMC7546880 DOI: 10.3389/fgene.2020.564301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) regulate mRNA translation by binding to microRNAs (miRNAs), and their expression is altered in diverse disorders, including cancer, cardiovascular disease, and Parkinson’s disease. Here, we compare circRNA expression patterns in the temporal cortex and hippocampus of patients with pharmacoresistant mesial temporal lobe epilepsy (MTLE) and healthy controls. Nine circRNAs showed significant differential expression, including circRNA-HOMER1, which is expressed in synapses. Further, we identified miRNA binding sites within the sequences of differentially expressed (DE) circRNAs; expression levels of mRNAs correlated with changes in complementary miRNAs. Gene set enrichment analysis of mRNA targets revealed functions in heterocyclic compound binding, regulation of transcription, and signal transduction, which maintain the structure and function of hippocampal neurons. The circRNA–miRNA–mRNA interaction networks illuminate the molecular changes in MTLE, which may be pathogenic or an effect of the disease or treatments and suggests that DE circRNAs and associated miRNAs may be novel therapeutic targets.
Collapse
Affiliation(s)
- Lachlan G Gray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, NSW, Australia
| | - James D Mills
- Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Ashton Curry-Hyde
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Sasha Devore
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Daniel Friedman
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Catherine Scott
- Centre for Medical Image Computing, University College London Institute of Neurology, London, United Kingdom
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Eleonora Aronica
- Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands.,Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Langone Medical Center, New York, NY, United States
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, Sydney, NSW, Australia.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Serchov T, Schwarz I, Theiss A, Sun L, Holz A, Döbrössy MD, Schwarz MK, Normann C, Biber K, van Calker D. Enhanced adenosine A 1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology 2019; 162:107834. [PMID: 31682853 DOI: 10.1016/j.neuropharm.2019.107834] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/19/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Resilience to stress is critical for the development of depression. Enhanced adenosine A1 receptor (A1R) signaling mediates the antidepressant effects of acute sleep deprivation (SD). However, chronic SD causes long-lasting upregulation of brain A1R and increases the risk of depression. To investigate the effects of A1R on mood, we utilized two transgenic mouse lines with inducible A1R overexpression in forebrain neurons. These two lines have identical levels of A1R increase in the cortex, but differ in the transgenic A1R expression in the hippocampus. Switching on the transgene promotes robust antidepressant and anxiolytic effects in both lines. The mice of the line without transgenic A1R overexpression in the hippocampus (A1Hipp-) show very strong resistance towards development of stress-induced chronic depression-like behavior. In contrast, the mice of the line in which A1R upregulation extends to the hippocampus (A1Hipp+), exhibit decreased resilience to depression as compared to A1Hipp-. Similarly, automatic analysis of reward behavior of the two lines reveals that depression resistant A1Hipp-transgenic mice exhibit high sucrose preference, while mice of the vulnerable A1Hipp + line developed stress-induced anhedonic phenotype. The A1Hipp + mice have increased Homer1a expression in hippocampus, correlating with impaired long-term potentiation in the CA1 region, mimicking the stressed mice. Furthermore, virus-mediated overexpression of Homer1a in the hippocampus decreases stress resilience. Taken together our data indicate for first time that increased expression of A1R and Homer1a in the hippocampus modulates the resilience to stress-induced depression and thus might potentially mediate the detrimental effects of chronic sleep restriction on mood.
Collapse
Affiliation(s)
- Tsvetan Serchov
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| | - Inna Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Alice Theiss
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Lu Sun
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Amrei Holz
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Mate D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Martin K Schwarz
- Functional Neuroconnectomics Group, Department of Experimental Epileptology and Cognition Research, Life and Brain Centre, University of Bonn, Medical School, 53105, Bonn, Germany
| | - Claus Normann
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Knut Biber
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Department Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, 9713, AV Groningen, the Netherlands
| | - Dietrich van Calker
- Department for Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| |
Collapse
|
11
|
Abstract
OBJECTIVE Close-loop control of brain and behavior will benefit from real-time detection of behavioral events to enable low-latency communication with peripheral devices. In animal experiments, this is typically achieved by using sparsely distributed (embedded) sensors that detect animal presence in select regions of interest. High-speed cameras provide high-density sampling across large arenas, capturing the richness of animal behavior, however, the image processing bottleneck prohibits real-time feedback in the context of rapidly evolving behaviors. APPROACH Here we developed an open-source software, named PolyTouch, to track animal behavior in large arenas and provide rapid close-loop feedback in ~5.7 ms, ie. average latency from the detection of an event to analog stimulus delivery, e.g. auditory tone, TTL pulse, when tracking a single body. This stand-alone software is written in JAVA. The included wrapper for MATLAB provides experimental flexibility for data acquisition, analysis and visualization. MAIN RESULTS As a proof-of-principle application we deployed the PolyTouch for place awareness training. A user-defined portion of the arena was used as a virtual target; visit (or approach) to the target triggered auditory feedback. We show that mice develop awareness to virtual spaces, tend to stay shorter and move faster when they reside in the virtual target zone if their visits are coupled to relatively high stimulus intensity (⩾49 dB). Thus, close-loop presentation of perceived aversive feedback is sufficient to condition mice to avoid virtual targets within the span of a single session (~20 min). SIGNIFICANCE Neuromodulation techniques now allow control of neural activity in a cell-type specific manner in spiking resolution. Using animal behavior to drive closed-loop control of neural activity would help to address the neural basis of behavioral state and environmental context-dependent information processing in the brain.
Collapse
|
12
|
Sauvage M, Kitsukawa T, Atucha E. Single-cell memory trace imaging with immediate-early genes. J Neurosci Methods 2019; 326:108368. [DOI: 10.1016/j.jneumeth.2019.108368] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022]
|
13
|
Kole K, Zhang Y, Jansen EJR, Brouns T, Bijlsma A, Calcini N, Yan X, Lantyer ADS, Celikel T. Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex. Nat Neurosci 2019; 23:1044-1046. [PMID: 31570861 DOI: 10.1038/s41593-019-0474-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Yiping Zhang
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Eric J R Jansen
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Terence Brouns
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Ate Bijlsma
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Niccolo Calcini
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Xuan Yan
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Angelica da Silva Lantyer
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Hughes S, Celikel T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Bioessays 2019; 41:e1900088. [DOI: 10.1002/bies.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samantha Hughes
- HAN BioCentreHAN University of Applied Sciences Nijmegen 6525EM The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain Cognition and BehaviourRadboud University Nijmegen 6525AJ The Netherlands
| |
Collapse
|
15
|
Clifton NE, Trent S, Thomas KL, Hall J. Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity. MOLECULAR NEUROPSYCHIATRY 2019; 5:147-161. [PMID: 31312636 DOI: 10.1159/000500267] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders.
Collapse
Affiliation(s)
- Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
16
|
Azarfar A, Zhang Y, Alishbayli A, Miceli S, Kepser L, van der Wielen D, van de Moosdijk M, Homberg J, Schubert D, Proville R, Celikel T. An open-source high-speed infrared videography database to study the principles of active sensing in freely navigating rodents. Gigascience 2018; 7:5168870. [PMID: 30418576 PMCID: PMC6283211 DOI: 10.1093/gigascience/giy134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/21/2018] [Indexed: 11/12/2022] Open
Abstract
Background Active sensing is crucial for navigation. It is characterized by self-generated motor action controlling the accessibility and processing of sensory information. In rodents, active sensing is commonly studied in the whisker system. As rats and mice modulate their whisking contextually, they employ frequency and amplitude modulation. Understanding the development, mechanisms, and plasticity of adaptive motor control will require precise behavioral measurements of whisker position. Findings Advances in high-speed videography and analytical methods now permit collection and systematic analysis of large datasets. Here, we provide 6,642 videos as freely moving juvenile (third to fourth postnatal week) and adult rodents explore a stationary object on the gap-crossing task. The dataset includes sensory exploration with single- or multi-whiskers in wild-type animals, serotonin transporter knockout rats, rats received pharmacological intervention targeting serotonergic signaling. The dataset includes varying background illumination conditions and signal-to-noise ratios (SNRs), ranging from homogenous/high contrast to non-homogenous/low contrast. A subset of videos has been whisker and nose tracked and are provided as reference for image processing algorithms. Conclusions The recorded behavioral data can be directly used to study development of sensorimotor computation, top-down mechanisms that control sensory navigation and whisker position, and cross-species comparison of active sensing. It could also help to address contextual modulation of active sensing during touch-induced whisking in head-fixed vs freely behaving animals. Finally, it provides the necessary data for machine learning approaches for automated analysis of sensory and motion parameters across a wide variety of signal-to-noise ratios with accompanying human observer-determined ground-truth.
Collapse
Affiliation(s)
- Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Yiping Zhang
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Artoghrul Alishbayli
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Stéphanie Miceli
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Lara Kepser
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Daan van der Wielen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Mike van de Moosdijk
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Judith Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Dirk Schubert
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical School, Kapittelweg 29, Nijmegen, 6525 EN The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 HJ The Netherlands
| |
Collapse
|
17
|
Kole K, Celikel T. Neocortical Microdissection at Columnar and Laminar Resolution for Molecular Interrogation. ACTA ACUST UNITED AC 2018; 86:e55. [PMID: 30285322 DOI: 10.1002/cpns.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heterogeneous organization of the mammalian neocortex poses a challenge for elucidating the molecular mechanisms underlying its physiological processes. Although high-throughput molecular methods are increasingly deployed in neuroscience, their anatomical specificity is often lacking. In this unit, we introduce a targeted microdissection technique that enables extraction of high-quality RNA and proteins at high anatomical resolution from acutely prepared brain slices. We exemplify its utility by isolating single cortical columns and laminae from the mouse primary somatosensory (barrel) cortex. Tissues can be isolated from living slices in minutes, and the extracted RNA and protein are of sufficient quantity and quality to be used for RNA sequencing and mass spectrometry. This technique will help to increase the anatomical specificity of molecular studies of the neocortex, and the brain in general, as it is applicable to any brain structure that can be identified using optical landmarks in living slices. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Hippocampal Regulation of Postsynaptic Density Homer1 by Associative Learning. Neural Plast 2017; 2017:5959182. [PMID: 29238619 PMCID: PMC5697134 DOI: 10.1155/2017/5959182] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022] Open
Abstract
Genes involved in synaptic plasticity, particularly genes encoding postsynaptic density proteins, have been recurrently linked to psychiatric disorders including schizophrenia and autism. Postsynaptic density Homer1 proteins contribute to synaptic plasticity through the competing actions of short and long isoforms. The activity-induced expression of short Homer1 isoforms, Homer1a and Ania-3, is thought to be related to processes of learning and memory. However, the precise regulation of Homer1a and Ania-3 with different components of learning has not been investigated. Here, we used in situ hybridization to quantify short and long Homer1 expression in the hippocampus following consolidation, retrieval, and extinction of associative fear memory, using contextual fear conditioning in rats. Homer1a and Ania-3, but not long Homer1, were regulated by contextual fear learning or novelty detection, although their precise patterns of expression in hippocampal subregions were dependent on the isoform. We also show for the first time that the two short Homer1 isoforms are regulated after the retrieval and extinction of contextual fear memory, albeit with distinct temporal and spatial profiles. These findings support a role of activity-induced Homer1 isoforms in learning and memory processes in discrete hippocampal subregions and suggest that Homer1a and Ania-3 may play separable roles in synaptic plasticity.
Collapse
|
19
|
Datko MC, Hu JH, Williams M, Reyes CM, Lominac KD, von Jonquieres G, Klugmann M, Worley PF, Szumlinski KK. Behavioral and Neurochemical Phenotyping of Mice Incapable of Homer1a Induction. Front Behav Neurosci 2017; 11:208. [PMID: 29163080 PMCID: PMC5672496 DOI: 10.3389/fnbeh.2017.00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/12/2017] [Indexed: 11/18/2022] Open
Abstract
Immediate early and constitutively expressed products of the Homer1 gene regulate the functional assembly of post-synaptic density proteins at glutamatergic synapses to influence excitatory neurotransmission and synaptic plasticity. Earlier studies of Homer1 gene knock-out (KO) mice indicated active, but distinct, roles for IEG and constitutively expressed Homer1 gene products in regulating cognitive, emotional, motivational and sensorimotor processing, as well as behavioral and neurochemical sensitivity to cocaine. More recent characterization of transgenic mice engineered to prevent generation of the IEG form (a.k.a Homer1a KO) pose a critical role for Homer1a in cocaine-induced behavioral and neurochemical sensitization of relevance to drug addiction and related neuropsychiatric disorders. Here, we extend our characterization of the Homer1a KO mouse and report a modest pro-depressant phenotype, but no deleterious effects of the KO upon spatial learning/memory, prepulse inhibition, or cocaine-induced place-conditioning. As we reported previously, Homer1a KO mice did not develop cocaine-induced behavioral or neurochemical sensitization within the nucleus accumbens; however, virus-mediated Homer1a over-expression within the nucleus accumbens reversed the sensitization phenotype of KO mice. We also report several neurochemical abnormalities within the nucleus accumbens of Homer1a KO mice that include: elevated basal dopamine and reduced basal glutamate content, Group1 mGluR agonist-induced glutamate release and high K+-stimulated release of dopamine and glutamate within this region. Many of the neurochemical anomalies exhibited by Homer1a KO mice are recapitulated upon deletion of the entire Homer1 gene; however, Homer1 deletion did not affect NAC dopamine or alter K+-stimulated neurotransmitter release within this region. These data show that the selective deletion of Homer1a produces a behavioral and neurochemical phenotype that is distinguishable from that produced by deletion of the entire Homer1 gene. Moreover, the data indicate a specific role for Homer1a in regulating cocaine-induced behavioral and neurochemical sensitization of potential relevance to the psychotogenic properties of this drug.
Collapse
Affiliation(s)
- Michael C Datko
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jia-Hua Hu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Melanie Williams
- Department of Molecular, Developmental and Cell Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Cindy M Reyes
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States.,Department of Molecular, Developmental and Cell Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
20
|
Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun 2017; 8:1103. [PMID: 29062097 PMCID: PMC5653653 DOI: 10.1038/s41467-017-01191-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
Metabotropic glutamate receptor subtype 5 (mGluR5) is crucially implicated in the pathophysiology of Fragile X Syndrome (FXS); however, its dysfunction at the sub-cellular level, and related synaptic and cognitive phenotypes are unexplored. Here, we probed the consequences of mGluR5/Homer scaffold disruption for mGluR5 cell-surface mobility, synaptic N-methyl-D-aspartate receptor (NMDAR) function, and behavioral phenotypes in the second-generation Fmr1 knockout (KO) mouse. Using single-molecule tracking, we found that mGluR5 was significantly more mobile at synapses in hippocampal Fmr1 KO neurons, causing an increased synaptic surface co-clustering of mGluR5 and NMDAR. This correlated with a reduced amplitude of synaptic NMDAR currents, a lack of their mGluR5-activated long-term depression, and NMDAR/hippocampus dependent cognitive deficits. These synaptic and behavioral phenomena were reversed by knocking down Homer1a in Fmr1 KO mice. Our study provides a mechanistic link between changes of mGluR5 dynamics and pathological phenotypes of FXS, unveiling novel targets for mGluR5-based therapeutics. Dysfunction of mGluR5 has been implicated in Fragile X syndrome. Here, using a single-molecule tracking technique, the authors found an increased lateral mobility of mGluR5 at the synaptic site in Fmr1 KO hippocampal neurons, leading to abnormal NMDAR-mediated synaptic plasticity and cognitive deficits.
Collapse
|
21
|
Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol 2016; 13:52-64. [PMID: 27982041 DOI: 10.1038/nrneurol.2016.185] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Standard treatment of primary and metastatic brain tumours includes high-dose megavoltage-range radiation to the cranial vault. About half of patients survive >6 months, and many attain long-term control or cure. However, 50-90% of survivors exhibit disabling cognitive dysfunction. The radiation-associated cognitive syndrome is poorly understood and has no effective prevention or long-term treatment. Attention has primarily focused on mechanisms of disability that appear at 6 months to 1 year after radiotherapy. However, recent studies show that CNS alterations and dysfunction develop much earlier following radiation exposure. This finding has prompted the hypothesis that subtle early forms of radiation-induced CNS damage could drive chronic pathophysiological processes that lead to permanent cognitive decline. This Review presents evidence of acute radiation-triggered CNS inflammation, injury to neuronal lineages, accessory cells and their progenitors, and loss of supporting structure integrity. Moreover, injury-related processes initiated soon after irradiation could synergistically alter the signalling microenvironment in progenitor cell niches in the brain and the hippocampus, which is a structure critical to memory and cognition. Progenitor cell niche degradation could cause progressive neuronal loss and cognitive disability. The concluding discussion addresses future directions and potential early treatments that might reverse degenerative processes before they can cause permanent cognitive disability.
Collapse
|
22
|
Freudenberg F, Resnik E, Kolleker A, Celikel T, Sprengel R, Seeburg PH. Hippocampal GluA1 expression in Gria1 −/− mice only partially restores spatial memory performance deficits. Neurobiol Learn Mem 2016; 135:83-90. [DOI: 10.1016/j.nlm.2016.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
|
23
|
Jones OD. Do group I metabotropic glutamate receptors mediate LTD? Neurobiol Learn Mem 2016; 138:85-97. [PMID: 27545442 DOI: 10.1016/j.nlm.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/31/2023]
Abstract
Synapses undergo significant structural and functional reorganization in response to varying patterns of stimulation. These forms of plasticity are considered fundamental to cognition and neuronal homeostasis. An increasing number of reports highlight the importance of activity-dependent synaptic strengthening (long term potentiation: LTP) for learning. However, the functional significance of activity-dependent weakening of synapses (long term depression: LTD) remains relatively poorly understood. One form of synaptic weakening, induced by group I metabotropic glutamate receptors (mGluRs), has received significant attention from a mechanistic point of view and because of its augmentation in a murine model of Fragile X Syndrome. Yet, studies of this form of plasticity often yield confusing, contradictory results. These conflicting findings are likely attributable to the bulk stimulation and recording techniques often used to study synaptic plasticity (typically involving evoked extracellular recordings, which represent the summed activity of many synapses). Such studies inherently blur the identity of the synapses undergoing change, thus giving the illusion that synapses per se are being modified when in fact this may only be true of a specific subset of synapses. Indeed, studies employing minimal synaptic activation paint a fundamentally different picture of what is commonly called "mGluR-LTD". Here, I review the evidence in favour of group I mGluRs as mediators of various forms of synaptic downregulation and attempt to explain discrepancies in the literature. I argue that, while multiple forms of synaptic weakening may be triggered by these receptors, the canonical form of group I mGluR-mediated depression, mGluR-LTD, is in fact not a depression of basal synaptic responses. Rather, it is a reversal of established LTP and thus a form of depotentiation. Far from being arbitrary, this distinction has significant implications for the role of group I mGluRs in cognition, both in the healthy brain and in pathological conditions. Further, the differential actions of group I mGluRs at naïve and potentiated synapses suggest these receptors signal in a state-dependent manner to regulate various stages of the learning process.
Collapse
Affiliation(s)
- Owen D Jones
- Department of Psychology, Brain Health Research Centre & Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
24
|
Banerjee A, Luong JA, Ho A, Saib AO, Ploski JE. Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Mol Autism 2016; 7:16. [PMID: 26929812 PMCID: PMC4770673 DOI: 10.1186/s13229-016-0077-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Autism spectrum disorders (ASDs) represent a heterogeneous group of disorders with a wide range of behavioral impairments including social and communication deficits. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety, and some studies indicate that a subset of ASD individuals have a reduced ability to be fear conditioned. Deciphering the molecular basis of ASD has been considerably challenging and it currently remains poorly understood. In this study we examined the molecular basis of autism-like impairments in an environmentally induced animal model of ASD, where pregnant rats are exposed to the known teratogen, valproic acid (VPA), on day 12.5 of gestation and the subsequent progeny exhibit ASD-like symptoms. We focused our analysis on the basal and lateral nucleus of the amygdala (BLA), a region of the brain found to be associated with ASD pathology. Methods We performed whole genome gene expression analysis on the BLA using DNA microarrays to examine differences in gene expression within the amygdala of VPA-exposed animals. We validated one VPA-dysregulated candidate gene (Homer1a) using both quantitative PCR (qRT-PCR) and western blot. Finally, we overexpressed Homer1a within the basal and lateral amygdala of naïve animals utilizing adeno-associated viruses (AAV) and subsequently examined these animals in a battery of behavioral tests associated with ASD, including auditory fear conditioning, social interaction and open field. Results Our microarray data indicated that Homer1a was one of the genes which exhibited a significant upregulation within the amygdala. We observed an increase in Homer1a messenger RNA (mRNA) and protein in multiple cohorts of VPA-exposed animals indicating that dysregulation of Homer1a levels might underlie some of the symptoms exhibited by VPA-exposed animals. To test this hypothesis, we overexpressed Homer1a within BLA neurons utilizing a viral-mediated approach and found that overexpression of Homer1a impaired auditory fear conditioning and reduced social interaction, while having no influence on open-field behavior. Conclusions This study indicates that dysregulation of amygdala Homer1a might contribute to some autism-like symptoms induced by VPA exposure. These findings are interesting in part because Homer1a influences the functioning of Shank3, metabotropic glutamate receptors (mGluR5), and Homer1, and these proteins have previously been associated with ASD, indicating that these differing models of ASD may have a similar molecular basis. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0077-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Department of Cell Biology, Emory University, 615 Michael St. WBRB #415, Atlanta, GA 30322 USA
| | - Jonathan A Luong
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Anthony Ho
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Aeshah O Saib
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 West Campbell road, Richardson, TX 75080 USA
| |
Collapse
|
25
|
Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron 2015; 87:549-62. [PMID: 26247862 DOI: 10.1016/j.neuron.2015.07.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/26/2015] [Accepted: 07/16/2015] [Indexed: 12/25/2022]
Abstract
Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments.
Collapse
|
26
|
Wagner KV, Hartmann J, Labermaier C, Häusl AS, Zhao G, Harbich D, Schmid B, Wang XD, Santarelli S, Kohl C, Gassen NC, Matosin N, Schieven M, Webhofer C, Turck CW, Lindemann L, Jaschke G, Wettstein JG, Rein T, Müller MB, Schmidt MV. Homer1/mGluR5 activity moderates vulnerability to chronic social stress. Neuropsychopharmacology 2015; 40:1222-33. [PMID: 25409593 PMCID: PMC4367467 DOI: 10.1038/npp.2014.308] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology. The major scaffold protein Homer1 critically interacts with mGluR5 and has also been linked to several psychopathologies. Yet, the specific role of Homer1 in this context remains poorly understood. We used chronic social defeat stress as an established animal model of depression and investigated changes in transcription of Homer1a and Homer1b/c isoforms and functional coupling of Homer1 to mGluR5. Next, we investigated the consequences of Homer1 deletion, overexpression of Homer1a, and chronic administration of the mGluR5 inverse agonist CTEP (2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) on the effects of chronic stress. In mice exposed to chronic stress, Homer1b/c, but not Homer1a, mRNA was upregulated and, accordingly, Homer1/mGluR5 coupling was disrupted. We found a marked hyperactivity behavior as well as a dysregulated hypothalamic-pituitary-adrenal axis activity in chronically stressed Homer1 knockout (KO) mice. Chronic administration of the selective and orally bioavailable mGluR5 inverse agonist, CTEP, was able to recover behavioral alterations induced by chronic stress, whereas overexpression of Homer1a in the hippocampus led to an increased vulnerability to chronic stress, reflected in an increased physiological response to stress as well as enhanced depression-like behavior. Overall, our results implicate the glutamatergic system in the emergence of stress-induced psychiatric disorders, and support the Homer1/mGluR5 complex as a target for the development of novel antidepressant agents.
Collapse
Affiliation(s)
- Klaus V Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jakob Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christiana Labermaier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alexander S Häusl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Gengjing Zhao
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela Harbich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bianca Schmid
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christine Kohl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C Gassen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia,Schizophrenia Research Institute, Sydney NSW, Australia
| | - Marcel Schieven
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christian Webhofer
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area (NORD), Basel, Switzerland
| | - Georg Jaschke
- Roche Pharmaceutical Research and Early Development, Discovery Chemistry, Basel, Switzerland
| | - Joseph G Wettstein
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology, and Rare Diseases Translational Area (NORD), Basel, Switzerland
| | - Theo Rein
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Marianne B Müller
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany, Tel: +49 89 30622 519, Fax: +49 89 30622 610, E-mail:
| |
Collapse
|
27
|
Scheenen WJJM, Celikel T. Nanophysiology: Bridging synapse ultrastructure, biology, and physiology using scanning ion conductance microscopy. Synapse 2015; 69:233-41. [PMID: 25655013 DOI: 10.1002/syn.21807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/22/2015] [Indexed: 01/01/2023]
Abstract
Synaptic communication is at the core of neural circuit function, and its plasticity allows the nervous system to adapt to the changes in its environment. Understanding the mechanisms of this synaptic (re)organization will benefit from novel methodologies that enable simultaneous study of synaptic ultrastructure, biology, and physiology in identified circuits. Here, we describe one of these methodologies, i.e., scanning ion conductance microscopy (SICM), for electrical mapping of the membrane anatomy in tens of nanometers resolution in living neurons. When combined with traditional patch-clamp and fluorescence microscopy techniques, and the newly emerging nanointerference methodologies, SICM has the potential to mechanistically bridge the synaptic structure and function longitudinally throughout the life of a synapse.
Collapse
Affiliation(s)
- Wim J J M Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands
| | | |
Collapse
|
28
|
Ménard C, Gaudreau P, Quirion R. Signaling pathways relevant to cognition-enhancing drug targets. Handb Exp Pharmacol 2015; 228:59-98. [PMID: 25977080 DOI: 10.1007/978-3-319-16522-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle Boulevard, Montreal, QC, Canada, H4H 1R3
| | | | | |
Collapse
|
29
|
Wheeler KT, Payne V, D'Agostino RB, Walb MC, Munley MT, Metheny-Barlow LJ, Robbins ME. Impact of breathing 100% oxygen on radiation-induced cognitive impairment. Radiat Res 2014; 182:580-5. [PMID: 25338095 DOI: 10.1667/rr13643.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Future space missions are expected to include increased extravehicular activities (EVAs) during which astronauts are exposed to high-energy space radiation while breathing 100% oxygen. Given that brain irradiation can lead to cognitive impairment, and that oxygen is a potent radiosensitizer, there is a concern that astronauts may be at greater risk of developing cognitive impairment when exposed to space radiation while breathing 100% O(2) during an EVA. To address this concern, unanesthetized, unrestrained, young adult male Fischer 344 × Brown Norway rats were allowed to breathe 100% O(2) for 30 min prior to, during and 2 h after whole-body irradiation with 0, 1, 3, 5 or 7 Gy doses of 18 MV X rays delivered from a medical linear accelerator at a dose rate of ~425 mGy/min. Irradiated and unirradiated rats breathing air (~21% O(2)) served as controls. Cognitive function was assessed 9 months postirradiation using the perirhinal cortex-dependent novel object recognition task. Cognitive function was not impaired until the rats breathing either air or 100% O(2) received a whole-body dose of 7 Gy. However, at all doses, cognitive function of the irradiated rats breathing 100% O(2) was improved over that of the irradiated rats breathing air. These data suggest that astronauts are not at greater risk of developing cognitive impairment when exposed to space radiation while breathing 100% O(2) during an EVA.
Collapse
Affiliation(s)
- Kenneth T Wheeler
- a Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | |
Collapse
|
30
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
31
|
Moore ED, Kooshki M, Wheeler KT, Metheny-Barlow LJ, Robbins ME. Differential expression of Homer1a in the hippocampus and cortex likely plays a role in radiation-induced brain injury. Radiat Res 2013; 181:21-32. [PMID: 24377717 DOI: 10.1667/rr13475.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fractionated partial or whole-brain irradiation is the primary treatment for metastatic brain tumors. Despite reducing tumor burden and increasing lifespan, progressive, irreversible cognitive impairment occurs in >50% of the patients who survive >6 months after fractionated whole-brain irradiation. The exact mechanism(s) responsible for this radiation-induced brain injury are unknown; however, preclinical studies suggest that radiation modulates the extracellular receptor kinase signaling pathway, which is associated with cognitive impairment in many neurological diseases. In the study reported here, we demonstrated that the extracellular receptor kinase transcriptionally-regulated early response gene, Homer1a, was up-regulated transiently in the hippocampus and down-regulated in the cortex of young adult male Fischer 344 X Brown Norway rats at 48 h after 40 Gy of fractionated whole-brain irradiation. Two months after fractionated whole-brain irradiation, these changes in Homer1a expression correlated with a down-regulation of the hippocampal glutamate receptor 1 and protein kinase Cγ, and an up-regulation of cortical glutamate receptor 1 and protein kinase Cγ. Two drugs that prevent radiation-induced cognitive impairment in rats, the angiotensin type-1 receptor blocker, L-158,809, and the angiotensin converting enzyme inhibitor, ramipril, reversed the fractionated whole-brain irradiation-induced Homer1a expression at 48 h in the hippocampus and cortex and restored glutamate receptor 1 and protein kinase Cγ to the levels in sham-irradiated controls at 2 months after fractionated whole-brain irradiation. These data indicate that Homer1a is, (1) a brain region specific regulator of radiation-induced brain injury, including cognitive impairment and (2) potentially a druggable target for preventing it.
Collapse
|
32
|
TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 2013; 79:1086-93. [PMID: 24050399 DOI: 10.1016/j.neuron.2013.08.032] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 12/13/2022]
Abstract
Dynamic changes in 5-methylcytosine (5mC) have been implicated in the regulation of gene expression critical for consolidation of memory. However, little is known about how these changes in 5mC are regulated in the adult brain. The enzyme methylcytosine dioxygenase TET1 (TET1) has been shown to promote active DNA demethylation in the nervous system. Therefore, we took a viral-mediated approach to overexpress the protein in the hippocampus and examine its potential involvement in memory formation. We found that Tet1 is a neuronal activity-regulated gene and that its overexpression leads to global changes in modified cytosine levels. Furthermore, expression of TET1 or a catalytically inactive mutant (TET1m) resulted in the upregulation of several neuronal memory-associated genes and impaired contextual fear memory. In summary, we show that neuronal Tet1 regulates DNA methylation levels and that its expression, independent of its catalytic activity, regulates the expression of CNS activity-dependent genes and memory formation.
Collapse
|
33
|
Freudenberg F, Marx V, Seeburg PH, Sprengel R, Celikel T. Circuit mechanisms of GluA1-dependent spatial working memory. Hippocampus 2013; 23:1359-66. [DOI: 10.1002/hipo.22184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Florian Freudenberg
- Laboratory of Neural Circuits and Plasticity; University of Southern California, 3641 Watt Way; Los Angeles California
- Department of Molecular Neurobiology; Max Planck Institute for Medical Research, Jahnstrasse 29; 69120 Heidelberg Germany
| | - Verena Marx
- Laboratory of Neural Circuits and Plasticity; University of Southern California, 3641 Watt Way; Los Angeles California
- Department of Molecular Neurobiology; Max Planck Institute for Medical Research, Jahnstrasse 29; 69120 Heidelberg Germany
| | - Peter H. Seeburg
- Department of Molecular Neurobiology; Max Planck Institute for Medical Research, Jahnstrasse 29; 69120 Heidelberg Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology; Max Planck Institute for Medical Research, Jahnstrasse 29; 69120 Heidelberg Germany
| | - Tansu Celikel
- Laboratory of Neural Circuits and Plasticity; University of Southern California, 3641 Watt Way; Los Angeles California
- Department of Neurophysiology; Donders Center for Neuroscience, Radboud University Nijmegen; 6500 AA Nijmegen The Netherlands
| |
Collapse
|
34
|
Iacono G, Altafini C, Torre V. Early phase of plasticity-related gene regulation and SRF dependent transcription in the hippocampus. PLoS One 2013; 8:e68078. [PMID: 23935853 PMCID: PMC3720722 DOI: 10.1371/journal.pone.0068078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/25/2013] [Indexed: 02/07/2023] Open
Abstract
Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 µM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10∶90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Collapse
Affiliation(s)
- Giovanni Iacono
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Claudio Altafini
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
| | - Vincent Torre
- Department of Functional Analysis, International School for Advanced Studies, Trieste, Italy
- IIT Italian Institute of Technology, Genova, Italy
- * E-mail:
| |
Collapse
|
35
|
Acat1 knockdown gene therapy decreases amyloid-β in a mouse model of Alzheimer's disease. Mol Ther 2013; 21:1497-506. [PMID: 23774792 DOI: 10.1038/mt.2013.118] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
Both genetic inactivation and pharmacological inhibition of the cholesteryl ester synthetic enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1) have shown benefit in mouse models of Alzheimer's disease (AD). In this study, we aimed to test the potential therapeutic applications of adeno-associated virus (AAV)-mediated Acat1 gene knockdown in AD mice. We constructed recombinant AAVs expressing artificial microRNA (miRNA) sequences, which targeted Acat1 for knockdown. We demonstrated that our AAVs could infect cultured mouse neurons and glia and effectively knockdown ACAT activity in vitro. We next delivered the AAVs to mouse brains neurosurgically, and demonstrated that Acat1-targeting AAVs could express viral proteins and effectively diminish ACAT activity in vivo, without inducing appreciable inflammation. We delivered the AAVs to the brains of 10-month-old AD mice and analyzed the effects on the AD phenotype at 12 months of age. Acat1-targeting AAV delivered to the brains of AD mice decreased the levels of brain amyloid-β and full-length human amyloid precursor protein (hAPP), to levels similar to complete genetic ablation of Acat1. This study provides support for the potential therapeutic use of Acat1 knockdown gene therapy in AD.
Collapse
|
36
|
Pribiag H, Stellwagen D. Neuroimmune regulation of homeostatic synaptic plasticity. Neuropharmacology 2013; 78:13-22. [PMID: 23774138 DOI: 10.1016/j.neuropharm.2013.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/28/2013] [Accepted: 06/02/2013] [Indexed: 01/08/2023]
Abstract
Homeostatic synaptic plasticity refers to a set of negative-feedback mechanisms that are used by neurons to maintain activity within a functional range. While it is becoming increasingly clear that homeostatic regulation of synapse function is a key principle in the nervous system, the molecular details of this regulation are only beginning to be uncovered. Recent evidence implicates molecules classically associated with the peripheral immune system in the modulation of homeostatic synaptic plasticity. In particular, the pro-inflammatory cytokine TNFα, class I major histocompatibility complex, and neuronal pentraxin 2 are essential in the regulation of the compensatory synaptic response that occurs in response to prolonged neuronal inactivity. This review will present and discuss current evidence implicating neuroimmune molecules in the homeostatic regulation of synapse function. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- Horia Pribiag
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada
| | - David Stellwagen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, L7-132, 1650 Cedar Av, Montreal, QC H3G 1A4, Canada.
| |
Collapse
|
37
|
Abstract
In recent years, the glutamatergic system has been implicated in the development and treatment of psychiatric disorders. Glutamate signaling is processed by different receptors, including metabotropic glutamate receptors (mGluRs), which in turn interact with the scaffolding protein Homer1 to modulate downstream Ca(2+) signaling. Stress is a major risk factor for the incidence of psychiatric diseases, yet acute stress episodes may have diverging effects on individuals. Cognitive impairments have often been shown to occur after episodes of stress, however the specific role of mGluR5/Homer1 signaling in the interaction of stress and cognition has not yet been elucidated. In this study we show that a single episode of social defeat stress is sufficient to specifically induce cognitive impairments in mice 8 h after the stressor without affecting the animals' locomotion or anxiety levels. We also demonstrate that Homer1b/c levels as well as mGluR5/Homer1b/c interactions in the dorsal hippocampus are reduced up to 8 h after stress. Blockade of mGluR5 during the occurrence of social stress was able to rescue the cognitive impairments. In addition, a specific overexpression of Homer1b/c in the dorsal hippocampus also reversed the behavioral phenotype, indicating that both mGluR5 and Homer1b/c play a crucial role in the mediation of the stress effects. In summary, we could demonstrate that stress induces a cognitive deficit that is likely mediated by mGluR5/Homer1 signaling in the hippocampus. These findings help to reveal the underlying effects of cognitive impairments in patients suffering from stress-related psychiatric disorders.
Collapse
|
38
|
Jardin I, López JJ, Berna-Erro A, Salido GM, Rosado JA. Homer Proteins in Ca2+Entry. IUBMB Life 2013; 65:497-504. [DOI: 10.1002/iub.1162] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/07/2013] [Indexed: 11/08/2022]
|
39
|
GluA1 and its PDZ-interaction: a role in experience-dependent behavioral plasticity in the forced swim test. Neurobiol Dis 2012; 52:160-7. [PMID: 23262314 DOI: 10.1016/j.nbd.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 12/05/2012] [Accepted: 12/08/2012] [Indexed: 01/10/2023] Open
Abstract
Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.
Collapse
|
40
|
Ménard C, Quirion R. Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Front Pharmacol 2012; 3:182. [PMID: 23091460 PMCID: PMC3469824 DOI: 10.3389/fphar.2012.00182] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/23/2012] [Indexed: 12/22/2022] Open
Abstract
Normal aging is generally characterized by a slow decline of cognitive abilities albeit with marked individual differences. Several animal models have been studied to explore the molecular and cellular mechanisms underlying this phenomenon. The excitatory neurotransmitter glutamate and its receptors have been closely linked to spatial learning and hippocampus-dependent memory processes. For decades, ionotropic glutamate receptors have been known to play a critical role in synaptic plasticity, a form of adaptation regulating memory formation. Over the past 10 years, several groups have shown the importance of group 1 metabotropic glutamate receptor (mGluR) in successful cognitive aging. These G-protein-coupled receptors are enriched in the hippocampal formation and interact physically with other proteins in the membrane including glutamate ionotropic receptors. Synaptic plasticity is crucial to maintain cognitive abilities and long-term depression (LTD) induced by group 1 mGluR activation, which has been linked to memory in the aging brain. The translation and synthesis of proteins by mGluR-LTD modulate ionotropic receptor trafficking and expression of immediate early genes related to cognition. Fragile X syndrome, a genetic form of autism characterized by memory deficits, has been associated to mGluR receptor malfunction and aberrant activation of its downstream signaling pathways. Dysfunction of mGluR could also be involved in neurodegenerative disorders like Alzheimer’s disease (AD). Indeed, beta-amyloid, the main component of insoluble senile plaques and one of the hallmarks of AD, occludes mGluR-dependent LTD leading to diminished functional synapses. This review highlights recent findings regarding mGluR signaling, related synaptic plasticity, and their potential involvement in normal aging and neurological disorders.
Collapse
Affiliation(s)
- Caroline Ménard
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Montreal, QC, Canada
| | | |
Collapse
|
41
|
Rozov A, Zivkovic AR, Schwarz MK. Homer1 gene products orchestrate Ca(2+)-permeable AMPA receptor distribution and LTP expression. Front Synaptic Neurosci 2012; 4:4. [PMID: 23133416 PMCID: PMC3489244 DOI: 10.3389/fnsyn.2012.00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
We studied the role of Homer1 gene products on the presence of synaptic Ca2+-permeable AMPA receptors (AMPARs) and long-term potentiation (LTP) generation in hippocampal CA1 pyramidal neurons, using mice either lacking all Homer1 isoforms (Homer1 KO) or overexpressing the immediate early gene (IEG) product Homer1a (H1aTG). We found that Homer1 KO caused a significant redistribution of the AMPAR subunit GluA2 from the dendritic compartment to the soma. Furthermore, deletion of Homer1 enhanced the AMPAR-mediated component of glutamatergic currents at Schaffer collateral synapses as demonstrated by increased AMPA/NMDA current ratios. Meanwhile, LTP generation appeared to be unaffected. Conversely, sustained overexpression of Homer1a strongly reduced AMPA/NMDA current ratios and polyamine sensitivity of synaptic AMPAR, indicating that the proportion of synaptic GluA2-containing AMPAR increased relative to WT. LTP maintenance was abolished in H1aTG. Notably, overexpression of Homer1a in Homer1 KO or GluA2 KO mice did not affect LTP expression, suggesting activity-dependent interaction between Homer1a and long Homer1 isoforms with GluA2-containing AMPAR. Thus, Homer1a is essential for the activity-dependent regulation of excitatory synaptic transmission.
Collapse
Affiliation(s)
- Andrei Rozov
- IZN and Department of Clinical Neurobiology, University Hospital Heidelberg, Germany ; Division of Neuroscience, Medical Research Institute Ninewells Hospital and Medical School, Dundee University Dundee, UK
| | | | | |
Collapse
|
42
|
Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: relevance for neuropsychiatric diseases. Neurochem Res 2012; 38:1-22. [PMID: 22991141 DOI: 10.1007/s11064-012-0886-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Synaptic plasticity represents the long lasting activity-related strengthening or weakening of synaptic transmission, whose well-characterized types are the long term potentiation and depression. Despite this classical definition, however, the molecular mechanisms by which synaptic plasticity may occur appear to be extremely complex and various. The post-synaptic density (PSD) of glutamatergic synapses is a major site for synaptic plasticity processes and alterations of PSD members have been recently implicated in neuropsychiatric diseases where an impairment of synaptic plasticity has also been reported. Among PSD members, scaffolding proteins have been demonstrated to bridge surface receptors with their intracellular effectors and to regulate receptors distribution and localization both at surface membranes and within the PSD. This review will focus on the molecular physiology and pathophysiology of synaptic plasticity processes, which are tuned by scaffolding PSD proteins and their close related partners, through the modulation of receptor localization and distribution at post-synaptic sites. We suggest that, by regulating both the compartmentalization of receptors along surface membrane and their degradation as well as by modulating receptor trafficking into the PSD, postsynaptic scaffolding proteins may contribute to form distinct signaling micro-domains, whose efficacy in transmitting synaptic signals depends on the dynamic stability of the scaffold, which in turn is provided by relative amounts and post-translational modifications of scaffolding members. The putative relevance for neuropsychiatric diseases and possible pathophysiological mechanisms are discussed in the last part of this work.
Collapse
|
43
|
Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, Ollendorff V, Bockaert J, Fagni L, Perroy J. Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. ACTA ACUST UNITED AC 2012; 198:251-63. [PMID: 22801779 PMCID: PMC3410417 DOI: 10.1083/jcb.201110101] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Synaptic activity–dependent remodeling of the glutamate receptor scaffold complex generates a negative feedback loop that limits further NMDA receptor activation. Scaffolding proteins interact with membrane receptors to control signaling pathways and cellular functions. However, the dynamics and specific roles of interactions between different components of scaffold complexes are poorly understood because of the dearth of methods available to monitor binding interactions. Using a unique combination of single-cell bioluminescence resonance energy transfer imaging in living neurons and electrophysiological recordings, in this paper, we depict the role of glutamate receptor scaffold complex remodeling in space and time to control synaptic transmission. Despite a broad colocalization of the proteins in neurons, we show that spine-confined assembly/disassembly of this scaffold complex, physiologically triggered by sustained activation of synaptic NMDA (N-methyl-d-aspartate) receptors, induces physical association between ionotropic (NMDA) and metabotropic (mGlu5a) synaptic glutamate receptors. This physical interaction results in an mGlu5a receptor–mediated inhibition of NMDA currents, providing an activity-dependent negative feedback loop on NMDA receptor activity. Such protein scaffold remodeling represents a form of homeostatic control of synaptic excitability.
Collapse
Affiliation(s)
- Enora Moutin
- Centre national de la recherche scientifique, UMR-5203, Institut de Génomique Fonctionnelle, F-34000 Montpellier, Cedex 16, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS One 2012; 7:e28666. [PMID: 22238580 PMCID: PMC3253083 DOI: 10.1371/journal.pone.0028666] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/12/2011] [Indexed: 01/08/2023] Open
Abstract
Normal aging is associated with impairments in cognition, especially learning and memory. However, major individual differences are known to exist. Using the classical Morris Water Maze (MWM) task, we discriminated a population of 24-months old Long Evans aged rats in two groups--memory-impaired (AI) and memory-unimpaired (AU) in comparison with 6-months old adult animals. AI rats presented deficits in learning, reverse memory and retention. At the molecular level, an increase in metabotropic glutamate receptors 5 (mGluR5) was observed in post-synaptic densities (PSD) in the hippocampus of AU rats after training. Scaffolding Homer 1b/c proteins binding to group 1 mGluR facilitate coupling with its signaling effectors while Homer 1a reduces it. Both Homer 1a and 1b/c levels were up-regulated in the hippocampus PSD of AU animals following MWM task. Using immunohistochemistry we further demonstrated that mGluR5 as well as Homer 1b/c stainings were enhanced in the CA1 hippocampus sub-field of AU animals. In fact mGluR5 and Homer 1 isoforms were more abundant and co-localized in the hippocampal dendrites in AU rats. However, the ratio of Homer 1a/Homer 1b/c bound to mGluR5 in the PSD was four times lower for AU animals compared to AI rats. Consequently, AU animals presented higher PKCγ, ERK, p70S6K, mTOR and CREB activation. Finally the expression of immediate early gene Arc/Arg3.1 was shown to be higher in AU rats in accordance with its role in spatial memory consolidation. On the basis of these results, a model of successful cognitive aging with a critical role for mGluR5, Homer 1 proteins and downstream signalling pathways is proposed here.
Collapse
|
45
|
Khodosevich K, Watanabe Y, Monyer H. EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci 2011; 124:1268-79. [DOI: 10.1242/jcs.076059] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the postnatal brain, new neurons continue to be generated in two neurogenic areas, the subventricular zone of the lateral ventricles (SVZ) and the subgranular zone of the hippocampus. There is evidence that ephrins and their Eph receptors belong to a signaling network that regulates neurogenesis. On the basis of previous data, we have identified Eph receptor A4 (EphA4) as a potential regulator of neurogenesis. We showed by immunohistochemistry that in adult neurogenic niches EphA4 is expressed only by neural stem cells (NSCs). Using in vitro and in vivo assays, we demonstrated that EphA4 expression maintains NSCs in an undifferentiated state. Specifically, in neurosphere cultures Epha4 knockdown resulted in a decrease of NSC proliferation and premature differentiation. In postnatal and adult brain, Epha4 knockdown caused a decrease in NSCs in the SVZ, eventually resulting in a reduced number of postnatally generated neuroblasts. Both in vitro and in vivo effects were rescued by co-infection with a modified EphA4 that was resistant to Epha4 shRNA.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
- Department of Clinical Neurobiology/A230, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yasuhito Watanabe
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
- Department of Clinical Neurobiology/A230, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Heidelberg University Medical Center, 69120 Heidelberg, Germany
- Department of Clinical Neurobiology/A230, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Barry DN, Commins S. Imaging spatial learning in the brain using immediate early genes: insights, opportunities and limitations. Rev Neurosci 2011; 22:131-42. [DOI: 10.1515/rns.2011.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Tronson NC, Guzman YF, Guedea AL, Huh KH, Gao C, Schwarz MK, Radulovic J. Metabotropic glutamate receptor 5/Homer interactions underlie stress effects on fear. Biol Psychiatry 2010; 68:1007-15. [PMID: 21075228 PMCID: PMC2987592 DOI: 10.1016/j.biopsych.2010.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Glutamatergic transmission is one of the main components of the stress response; nevertheless, its role in the emotional stress sequelae is not known. Here, we investigated whether interactions between group I metabotropic glutamate receptors (metabotropic glutamate receptor 1 and metabotropic glutamate receptor 5 [mGluR5]) and Homer proteins mediate the delayed and persistent enhancement of fear induced by acute stress. METHODS Antagonists and inverse agonists of metabotropic glutamate receptor 1 and mGluR5 were injected into the hippocampus after immobilization stress and before contextual fear conditioning. Metabotropic glutamate receptor 5 was displaced from constitutive Homer scaffolds by viral transfection of Homer1a or injection of Tat decoy peptides. The effects of these manipulations on stress-enhanced fear were determined. RESULTS We show that stress induces interactions between hippocampal mGluR5 and Homer1a; causes a sustained, ligand-independent mGluR5 activity; and enhances contextual fear. Consistent with this mechanism, enhancement of fear was abolished by delayed poststress application of inverse agonists, but not antagonists, of mGluR5. The effect of stress was mimicked by virally transfected Homer1a or injection of Tat-metabotropic glutamate receptor C-tail decoy peptides into the hippocampus. CONCLUSIONS Constitutive activation of mGluR5 is identified as a principal hippocampal mechanism underlying the delayed stress effects on emotion and memory. Inverse agonists, but not antagonists, of mGluR5 are therefore proposed as a preventive treatment option for acute and posttraumatic stress disorders.
Collapse
Affiliation(s)
- Natalie C. Tronson
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yomayra F. Guzman
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anita L. Guedea
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyu Hwan Huh
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Can Gao
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martin K. Schwarz
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA,To whom correspondence should be addressed. , Department of Psychiatry and Behavioral Sciences, Northwestern University, 303 E. Chicago Ave., Ward 9-217, Chicago, IL 60611, USA; Tel. 312-908-9380; Fax: 312-503-0466
| |
Collapse
|
48
|
The power of reversibility regulating gene activities via tetracycline-controlled transcription. Methods Enzymol 2010; 477:429-53. [PMID: 20699154 DOI: 10.1016/s0076-6879(10)77022-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetracycline-controlled transcriptional activation systems are widely used to control gene expression in transgenic animals in a truly conditional manner. By this we refer to the capability of these expression systems to control gene activities not only in a tissue specific and temporal defined but also reversible manner. This versatility has made the Tet regulatory systems to a preeminent tool in reverse mouse genetics. The development of the technology in the past 15 years will be reviewed and guidelines will be given for its implementation in creating transgenic rodents. Finally, we highlight some recent exciting applications of the Tet technology as well as its foreseeable combination with other emerging technologies in mouse transgenesis.
Collapse
|
49
|
Gilks WP, Allott EH, Donohoe G, Cummings E, Gill M, Corvin AP, Morris DW. Replicated genetic evidence supports a role for HOMER2 in schizophrenia. Neurosci Lett 2009; 468:229-33. [PMID: 19914345 DOI: 10.1016/j.neulet.2009.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a heritable mental disorder with a complex genetic aetiology potentially implicating glutamatergic dysfunction. Following a search for functionally relevant genes with evidence of linkage to schizophrenia, we selected HOMER2 for as a candidate gene for investigation using a multi-stage association design. Twenty-six tagging SNPs were genotyped in 401 cases and 812 controls and associated SNPs were analysed in an independent sample of 408 cases and 804 controls, all from Ireland. Secondary replication analysis was undertaken using the International Schizophrenia Consortium (ISC) European sample of 1287 cases and 1128 controls. Significant associations were found at five SNPs in the first Irish sample (p<0.05), but were not replicated in the second Irish sample. SNP rs2306428 was significantly associated when the two samples were combined (p=0.008, OR=0.73) and also by proxy in the ISC sample (rs17158184, r(2)=1.0, p=0.019, OR=0.75). The protective allele at rs2306428 removes a predicted splice-enhancer binding site where Homer2 is naturally truncated. We did not detect an allelic effect of rs2306428 on neuropsychological function nor on HOMER2 splicing. This study supports a role for HOMER2 gene in schizophrenia susceptibility. Further work is required to confirm and elucidate the role of HOMER2 and interacting genes in schizophrenia aetiology.
Collapse
Affiliation(s)
- William P Gilks
- Neuropsychiatric Genetics Research Group, Institute for Molecular Medicine and Department of Psychiatry, Trinity College Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Khodosevich K, Seeburg PH, Monyer H. Major signaling pathways in migrating neuroblasts. Front Mol Neurosci 2009; 2:7. [PMID: 19668709 PMCID: PMC2724029 DOI: 10.3389/neuro.02.007.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 07/02/2009] [Indexed: 11/24/2022] Open
Abstract
Neuronal migration is a key process in the developing and adult brain. Numerous factors act on intracellular cascades of migrating neurons and regulate the final position of neurons. One robust migration route persists postnatally – the rostral migratory stream (RMS). To identify genes that govern neuronal migration in this unique structure, we isolated RMS neuroblasts by making use of transgenic mice that express EGFP in this cell population and performed microarray analysis on RNA. We compared gene expression patterns of neuroblasts obtained from two sites of the RMS, one closer to the site of origin, the subventricular zone, and one closer to the site of the final destination, the olfactory bulb (OB). We identified more than 400 upregulated genes, many of which were not known to be involved in migration. These genes were grouped into functional networks by bioinformatics analysis. Selecting a specific upregulated intracellular network, the cytoskeleton pathway, we confirmed by functional in vitro and in vivo analysis that the identified genes of this network affected RMS neuroblast migration. Based on the validity of this approach, we chose four new networks and tested by functional in vivo analysis their involvement in neuroblast migration. Thus, knockdown of Calm1, Gria1 (GluA1) and Camk4 (calmodulin-signaling network), Hdac2 and Hsbp1 (Akt1-DNA transcription network), Vav3 and Ppm1a (growth factor signaling network) affected neuroblast migration to the OB.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Department of Clinical Neurobiology, Interdisciplinary Center for Neurosciences Heidelberg, Germany
| | | | | |
Collapse
|