1
|
Dilshan MAH, Omeka WKM, Udayantha HMV, Liyanage DS, Rodrigo DCG, Warnakula WADLR, Hanchapola HACR, Kodagoda YK, Ganepola GANP, Kim J, Kim G, Lee J, Jeong T, Lee S, Wan Q, Lee J. Insights into the functional properties of thioredoxin domain-containing protein 12 (TXNDC12): Antioxidant activity, immunological expression, and wound-healing effect in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109939. [PMID: 39366647 DOI: 10.1016/j.fsi.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Thioredoxin domain-containing protein 12 (TXNDC12) is a member of the thioredoxin-like superfamily that contributes to various thiol-dependent metabolic activities in all living organisms. In this research, the TXNDC12 gene from yellowtail clownfish (Amphiprion clarkii) was structurally characterized using in silico tools, assessed for immunological expression, and evaluated for biological activity using recombinant protein and cellular overexpression. The deduced coding sequence of AcTXNDC12 comprised a 522-bp nucleotide, encoding 173 amino acids with a predicted molecular mass of 19.198 kDa. The AcTXNDC12 protein consists of a66WCGAC70 active motif and a170GDEL173 signature. The highest tissue-specific expression of AcTXNDC12 was observed in the brain tissue, with significant modulation observed in the blood and gill tissues following stimulation of polyinosinic: polycytidylic acid, lipopolysaccharides (LPS), and Vibrio harveyi. In functional assays, recombinant AcTXNDC12 protein (rAcTXNDC12) showed insulin disulfide reduction activity, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) decolorization antioxidant capacity, and ferric (Fe3+) reducing antioxidant potential. Additionally, a significant reduction in nitric oxide production was observed in AcTXNDC12-overexpressed RAW 264.7 cells upon LPS stimulation. Furthermore, genes associated with the regulation of oxidative stress, including nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (Cat), peroxiredoxin 1 (Prx1), and ribonucleotide reductase catalytic subunit M1 (Rrm1) were significantly upregulated in fathead minnow cells overexpressing AcTXNDC12 in response to H2O2 treatment. The scratch wound healing assay demonstrated tissue regeneration and cell proliferation ability upon AcTXNDC12 overexpression. Altogether, the current study elucidated the antioxidant activity, immunological importance, and wound-healing effect of the AcTXNDC12 gene in yellowtail clownfish, providing valuable insights for advancing the aquaculture of A. clarkii fish.
Collapse
Affiliation(s)
- M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Xu X, Hei Y, Wang B, Tian S, Chen X, Zhang J, Wang F. TXNDC12 inhibits pancreatic tumor cells ferroptosis by regulating GSH/GGT7 and promotes its growth and metastasis. J Cancer 2024; 15:3913-3929. [PMID: 38911386 PMCID: PMC11190766 DOI: 10.7150/jca.93208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 06/25/2024] Open
Abstract
Background: Thioredoxin domain-containing protein 12 (TXNDC12) is upregulated in a variety of tumours, including pancreatic cancer (PAAD), and its high expression is closely associated with poor prognosis. However, the regulatory mechanism of TXNDC12 in PAAD has not been reported. The aim of this study is to reveal the precise mechanism of TXNDC12 in regulating PAAD progression. Methods: The expression of TXNDC12 in pan-cancer as well as PAAD was verified by TCGA and GTEx databases, Western blot and RT-qPCR. CCK8 assay, clone formation assay and cell cycle assay were used to observe the effect of TXNDC12 on the proliferation of PAAD cells, the migration and invasion capacities were verified by wound healing assay and Transwell assay. The effect of TXNDC12 on apoptosis of MIA PaCa-2 and PANC-1 cells was detected using Hochest and flow cytometry. Finally, the interaction of TXNDC12 with GGT7 was predicted by STRING database and confirmed by CO-IP assay, the effect of TXNDC12 on ferroptosis through GGT7 was evaluated by GSH assay, MDA assay, ROS assay and Western blot. Results: TXNDC12 is upregulated in PAAD tissues, and patients with high TXNDC12 levels generally have shorter survival times. Knockdown of TXNDC12 significantly inhibited the proliferation, migration and invasion and promoted apoptosis of MIA PaCa-2 and PANC-1 cells. Mechanistically, knockdown of TXNDC12 resulted in a decrease in intracellular GSH content and an increase in GSSG content, as well as elevated levels of pro-ferroptosis factors, such as MDA and ROS. STRING database predicted that TXNDC12 interacts with GGT7, and CO-IP assay was used to validate this result. Finally, the effect of knocking down TXNDC12 on pancreatic cancer cell functions was able to be reversed by overexpression of GGT7. Conclusion: TXNDC12 inhibits ferroptosis in PAAD cells through the GSH/GGT7 axis thereby promoting their development.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yan'an University College of Basic Medical Sciences, Yan'an, 716000, China
| | - Yu Hei
- Yan'an University College of Basic Medical Sciences, Yan'an, 716000, China
- Yan 'an City fungi resources Development and biological control key laboratory, Yan'an 716000, China
| | - Bobo Wang
- Yan'an University College of Basic Medical Sciences, Yan'an, 716000, China
- Yan 'an City fungi resources Development and biological control key laboratory, Yan'an 716000, China
| | - Shuyue Tian
- Yan'an University College of Basic Medical Sciences, Yan'an, 716000, China
- Yan 'an City fungi resources Development and biological control key laboratory, Yan'an 716000, China
| | - Xuanyu Chen
- Yan 'an City fungi resources Development and biological control key laboratory, Yan'an 716000, China
| | - Jing Zhang
- Yan'an University College of Basic Medical Sciences, Yan'an, 716000, China
| | - Fenghui Wang
- Yan'an University College of Basic Medical Sciences, Yan'an, 716000, China
- Yan 'an City fungi resources Development and biological control key laboratory, Yan'an 716000, China
| |
Collapse
|
3
|
Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, Kang R, Tang D, He Q. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience 2023; 26:108393. [PMID: 38047088 PMCID: PMC10690572 DOI: 10.1016/j.isci.2023.108393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.
Collapse
Affiliation(s)
- Lanlan Tang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yichun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
4
|
Yu H, Zhu K, Wang M, Jiang X. TXNDC12 knockdown promotes ferroptosis by modulating SLC7A11 expression in glioma. Clin Transl Sci 2023; 16:1957-1971. [PMID: 37503932 PMCID: PMC10582671 DOI: 10.1111/cts.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death process mainly triggered by reactive oxygen species (ROS) and lipid peroxidation. Thioredoxin domain protein 12 (TXNDC12) promotes the development of some tumors; however, its function in tumor ferroptosis remains unclear. In this study, we found that knockdown of TXNDC12 promoted erastin-induced increase in ROS, lipid peroxidation, and Fe2+ levels, and decreased glutathione content. TXNDC12 is involved in ferroptosis by regulating SLC7A11. Further studies showed that TXNDC12 knockdown promoted an erastin-induced decrease in glioma cell viability. Overall, TXNDC12 played a significant role in ferroptosis by modulating SLC7A11 expression. Thus, TXNDC12 and ferroptosis may provide new targets for the treatment of gliomas.
Collapse
Affiliation(s)
- Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
6
|
Cheng X, Liu Z, Liang W, Zhu Q, Wang C, Wang H, Zhang J, Li P, Gao Y. ECM2, a prognostic biomarker for lower grade glioma, serves as a potential novel target for immunotherapy. Int J Biochem Cell Biol 2023; 158:106409. [PMID: 36997057 DOI: 10.1016/j.biocel.2023.106409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Extracellular matrix protein 2 (ECM2), which regulates cell proliferation and differentiation, has recently been reported as a prognostic indicator for multiple cancers, but its value in lower grade glioma (LGG) remains unknown. In this study, LGG transcriptomic data of 503 cases in The Cancer Genome Atlas (TCGA) database and 403 cases in The Chinese Glioma Genome Atlas (CGGA) database were collected to analyze ECM2 expression patterns and the relationship with clinical characteristics, prognosis, enriched signaling pathways, and immune-related markers. In addition, a total of 12 laboratory samples were used for experimental validation. Wilcoxon or Kruskal-Wallis tests demonstrated highly expressed ECM2 in LGG was positively associated with malignant histological features and molecular features such as recurrent LGG and isocitrate dehydrogenase (IDH) wild-type. Also, Kaplan-Meier (KM) curves proved high ECM2 expression could predict shorter overall survival in LGG patients, as multivariate analysis and meta-analysis claimed ECM2 was a deleterious factor for LGG prognosis. In addition, the enrichment of immune-related pathways for ECM2, for instance JAK-STAT pathway, was obtained by Gene Set Enrichment Analysis (GSEA) analysis. Furthermore, positive relationships between ECM2 expression with immune cells infiltration and cancer-associated fibroblasts (CAFs), iconic markers (CD163), and immune checkpoints (CD274, encoding PD-L1) were proved by Pearson correlation analysis. Finally, laboratory experiments of RT-qPCR and immunohistochemistry showed high expression of ECM2, as well as CD163 and PD-L1 in LGG samples. This study identifies ECM2, for the first time, as a subtype marker and prognostic indicator for LGG. ECM2 could also provide a reliable guarantee for further personalized therapy, synergizing with tumor immunity, to break through the current limitations and thus reinvigorating immunotherapy for LGG. AVAILABILITY OF DATA AND MATERIALS: Raw data from all public databases involved in this study are stored in the online repository (chengMD2022/ECM2 (github.com)).
Collapse
|
7
|
Kang J, Xiang X, Chen X, Jiang J, Zhang Y, Li L, Tang J. Angiogenesis-related gene signatures reveal the prognosis of cervical cancer based on single cell sequencing and co-expression network analysis. Front Cell Dev Biol 2023; 10:1086835. [PMID: 36712973 PMCID: PMC9877352 DOI: 10.3389/fcell.2022.1086835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Cervical cancer ranks first in female reproductive tract tumors in terms of morbidity and mortality. Yet the curative effect of patients with persistent, recurrent or metastatic cervical cancer remains unsatisfactory. Although antitumor angiogenic drugs have been recommended as the first-line treatment options for cervical cancer, there are no comprehensive prognostic indicators for cervical cancer based on angiogenic signature genes. In this study, we aimed to develop a model to assess the prognosis of cervical cancer based on angiogenesis-related (AG) signature genes, and to provide some reference for the comprehensive treatment of cervical cancer in the clinical setting. First we screened the AG gene set from GeneCard website, and then performed angiogenesis-related scores (AGS) per cell from single cell sequencing dataset GSE168652, followed by performing weighted gene co-expression network analysis (WGCNA) for cervical cancer patients according to angiogenesis phenotype. Thus, we established a prognostic model based on AGS by taking the intersection of WGCNA angiogenic module gene and differential gene (DEGs) of GSE168652. The GSE44001 was selected as an external validation set, followed by performing ROC curve analysis to assess its accuracy. The results showed that we successfully constructed a prognostic model related to the AG genes. Patients in the high-AGS group in both the train, test and the validation sets had a worse prognosis than those in the low-AGS group, had lower expression of most immune checkpoint-associated genes and lower tumor mutational burden as well. Patients in the low-AGS group were more sensitive to AMG.706, Bosutinib, and Lenalidomide while Imatinib, Pazopanib, and Sorafenib were more recommended to patients in the high-AGS group. Finally, TXNDC12 and ZC3H13, which have high hazard ratio and poor prognosis in the model, were highly expressed in cervical cancer cell lines and tissue. Meanwhile, the results showed that TXNDC12 promoted the migration of cervical cancer cells and the tubule-forming ability of endothelial cells. In conclusion, our model based on genes with AG features can effectively assess the prognosis of cervical cancer, and can also provide reference for clinicians to choose immune-related treatments.
Collapse
Affiliation(s)
- Jiawen Kang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Xiang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiaoyan Chen
- Department of Pathology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jingwen Jiang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Internal Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China,*Correspondence: Yong Zhang, ; Lesai Li, ; Jie Tang,
| | - Lesai Li
- Department of Gynecologic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yong Zhang, ; Lesai Li, ; Jie Tang,
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Yong Zhang, ; Lesai Li, ; Jie Tang,
| |
Collapse
|
8
|
Molecular markers related to patient outcome in patients with IDH-mutant astrocytomas grade 2 to 4: A systematic review. Eur J Cancer 2022; 175:214-223. [PMID: 36152406 DOI: 10.1016/j.ejca.2022.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Grading and classification of IDH-mutant astrocytomas has shifted from solely histology towards histology combined with molecular diagnostics. In this systematic review, we give an overview of all currently known clinically relevant molecular markers within IDH-mutant astrocytomas grade 2 to 4. METHODS A literature search was performed in five electronic databases for English original papers on patient outcome with respect to a molecular marker as determined by DNA/RNA sequencing, micro-arrays, or DNA methylation profiling in IDH-mutant astrocytomas grade 2 to 4. Papers were included if molecular diagnostics were performed on tumour tissue of at least 15 IDH-mutant astrocytoma patients, and if the investigated molecular markers were not limited to the diagnostic markers MGMT, ATRX, TERT, and/or TP53. RESULTS The literature search identified 4508 unique articles, published between August 2012 and December 2021, of which ultimately 44 articles were included. Numerous molecular markers from these papers were significantly correlated to patient outcome. The associations between patient outcome and non-canonical IDH mutations, PI3K mutations, high expression of MSH2, high expression of RAD18, homozygous deletion of CDKN2A/B, amplification of PDGFRA, copy number neutral loss of chromosomal arm 17p, loss of chromosomal arm 19q, the G-CIMP-low DNA methylation cluster, high total CNV, and high tumour mutation burden were confirmed in multiple studies. CONCLUSIONS Multiple genetic and epigenetic markers are associated with survival in IDH-mutant astrocytoma patients. Commonly affected are the RB signalling pathway, the RTK-PI3K-mTOR signalling pathway, genomic stability markers, and (epigenetic) gene regulation.
Collapse
|