1
|
Huelsboemer L, Moscarelli J, Dony A, Boroumand S, Kochen A, Knoedler L, Yu CT, Hauc SC, Stögner VA, Formica RN, Lian CG, Murphy GF, Pomahac B, Kauke-Navarro M. The role of C4d and donor specific antibodies in face and hand transplantation-a systematic review. FRONTIERS IN TRANSPLANTATION 2024; 3:1442006. [PMID: 39291278 PMCID: PMC11405992 DOI: 10.3389/frtra.2024.1442006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/11/2024] [Indexed: 09/19/2024]
Abstract
To date, little is known about the mechanisms of rejection in vascularized composite allotransplantation, particularly for antibody mediated rejection. Additionally, no clear guidelines exist for the diagnosis and management of antibody-mediated rejection in vascularized composite allotransplantation. A systematic review of electronic databases (Embase and PubMed) was conducted to evaluate the relationship of donor specific antibodies and C4d deposition in correlation with cellular rejection following hand and face transplantation reported by centers between 1998 and July 2023. We extracted data on serum donor specific antibodies at the time of biopsy proven rejection according to Banff classification and C4d staining of target tissues. Mann-Whitney U tests were performed to compare rejection grade between groups divided by status of C4d deposition and serum donor specific antibodies, and Fisher's Exact test was used to assess association between the two markers. This review adhered to PRISMA guidelines. A total of 26 patients (5 face, 21 hand) were identified and data on 90 acute rejection episodes with information on Banff grade, donor specific antibody status, and C4d deposition were available. Donor specific antibodies were found to be associated with higher rejection grade (p = 0.005). C4d was not found to be associated with higher rejection grade (p = 0.33). Finally, no significant association was found between concurrent status of the two markers (p = 0.23). These findings suggest that the presence of donor specifc antibodies may be associated with higher grades of acute cellular rejection following hand and face transplantation. More consistent reporting on rejection episodes is needed in order to better understand antibody-mediated rejection in vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Jake Moscarelli
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Alna Dony
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
- School of Medicine, University of Leeds, Woodhouse, Leeds, United Kingdom
| | - Sam Boroumand
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Leonard Knoedler
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
- University of Regensburg, Regensburg, Germany
| | - Catherine T Yu
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Sacha C Hauc
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Richard N Formica
- Department of Medicine, Section of Nephrology and Transplantation, Yale School of Medicine, New Haven, CT, United States
| | - Christiane G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Georg F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Filz von Reiterdank I, Tawa P, Berkane Y, de Clermont-Tonnerre E, Dinicu AT, Pendexter C, Goutard M, Lellouch AG, Mink van der Molen AB, Coert JH, Cetrulo CL, Uygun K. Sub-zero non-freezing of vascularized composite allografts in a rodent partial hindlimb model. Cryobiology 2024; 116:104950. [PMID: 39134131 PMCID: PMC11404353 DOI: 10.1016/j.cryobiol.2024.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Ischemia is a major limiting factor in Vascularized Composite Allotransplantation (VCA) as irreversible muscular injury can occur after as early as 4-6 h of static cold storage (SCS). Organ preservation technologies have led to the development of storage protocols extending rat liver ex vivo preservation up to 4 days. Development of such a protocol for VCAs has the added challenge of inherent ice nucleating factors of the graft, therefore, this study focused on developing a robust protocol for VCA supercooling. Rodent partial hindlimbs underwent subnormothermic machine perfusion (SNMP) with several loading solutions, followed by a storage solution with cryoprotective agents (CPA) developed for VCAs. Storage occurred in suspended animation for 24h and VCAs were recovered using SNMP with modified Steen. This study shows a robust VCA supercooling preservation protocol in a rodent model. Further optimization is expected to allow for its application in a transplantation model, which would be a breakthrough in the field of VCA preservation.
Collapse
Affiliation(s)
- I Filz von Reiterdank
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA; Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - P Tawa
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, Paris, France
| | - Y Berkane
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
| | - E de Clermont-Tonnerre
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, Paris, France
| | - A T Dinicu
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA
| | - C Pendexter
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M Goutard
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Plastic, Reconstructive et Aesthetic Surgery, Hôpital Paris Saint-Joseph, Paris, France
| | - A G Lellouch
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - A B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J H Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C L Cetrulo
- Shriners Children's Boston, Boston, MA, USA; Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - K Uygun
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Shriners Children's Boston, Boston, MA, USA.
| |
Collapse
|
3
|
Blades CM, Greyson MA, Dumanian ZP, Yu JW, Wang Y, Li B, Wang Z, Washington KM, Huang CA, Navarro-Alvarez N, Mathes DW. Development of a Porcine VCA Model Using an External Iliac Vessel-Based Vertical Rectus Abdominus Myocutaneous Flap. J Reconstr Microsurg 2024. [PMID: 39106899 DOI: 10.1055/s-0044-1788812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) involves transplanting a functional and anatomically complete tissue graft, such as a hand or face, from a deceased donor to a recipient. Although clinical VCA has resulted in successful outcomes, high rates of acute rejection and increased requirements for immunosuppression have led to significant long-term complications. Of note, immunosuppressed graft recipients are predisposed to infections, organ dysfunction, and malignancies. The long-term success of VCA grafts requires the discovery and implementation of unique approaches that avoid these complications altogether. Here, we describe our surgical technique and initial experience with a reproducible heterotopic porcine VCA model for the preclinical assessment of approaches to improve graft outcomes. METHODS Six heterotopic porcine allogeneic vertical rectus abdominis myocutaneous flap transplants were performed using Sinclair donors and Yucatan recipients. Immunosuppressive therapy was not used. Each flap was based on the left external iliac vessel system. Animals were followed postoperatively for surgery-related complications. RESULTS The six pigs underwent successful VCA and were euthanized at the end of the study. Each flap demonstrated complete survival following vessel anastomosis. For the allogeneic recipients, on average, minimal erythema and healthy flap color were observed from postoperative days 1 to 4. There were no surgery-related animal deaths or complications. CONCLUSION We have developed a reproducible, technically feasible heterotopic porcine VCA model based on the left external iliac vessel system. Our results demonstrate this model's potential to improve VCA graft outcomes by exploring tolerance induction and rejection biomarker discovery in preclinical studies.
Collapse
Affiliation(s)
- Caitlin M Blades
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Mark A Greyson
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Zari P Dumanian
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Jason W Yu
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Yong Wang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Bing Li
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Zhaohui Wang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Kia M Washington
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Christene A Huang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Nalu Navarro-Alvarez
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| | - David W Mathes
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Ng PK, Yoeli D, Huang JL, Luo Y, Wang Y, Li B, Wang Z, Schold J, Jain S, Su AJA, Mathes DW, Washington KM, Farkash E, Jani AH, Huang CA. Successful Extension of Vascularized Composite Allograft Perfusion Cold Storage to 24 h in a Rat Hindlimb Transplant Model. Transplant Direct 2024; 10:e1623. [PMID: 38757052 PMCID: PMC11098188 DOI: 10.1097/txd.0000000000001623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 05/18/2024] Open
Abstract
Background Vascularized composite allograft transplantation is a treatment option for complex tissue injuries; however, ischemia reperfusion injury and high acute rejection rates remain a challenge. Hypothermic machine perfusion using acellular storage perfusate is a potential solution. This study evaluated the University of Wisconsin Kidney Preservation Solution-1 (KPS-1) compared with normal saline (NS) for preservation of donor rat hindlimbs subjected to 24 h of ex vivo perfusion cold storage. Methods Hindlimbs were subjected to 24-h perfusion cold storage with heparinized KPS-1 (n = 6) or heparinized NS (n = 6). Flow, resistance, and pH were measured continuously. At the end of the 24-h period, tissue was collected for histological analysis of edema and apoptosis. Results KPS-1 perfused limbs showed significantly less edema than the NS group, as evidenced by lower limb weight gain (P < 0.001) and less interfascicular space (P < 0.001). KPS-perfused muscle had significantly less cell death than NS-perfused muscle based on terminal deoxynucleotidyl transferase dUTP nick-end labeling (P < 0.001) and cleaved caspase-3 staining (P = 0.045). During hypothermic machine perfusion, a significant decrease in pH over time was detected in both groups, with a significantly greater decline in pH in the KPS-1 group than in the NS group. There were no significant differences overall and over time in flow rate or vascular resistance between the KPS and NS groups. Conclusions Perfusion with KPS-1 can successfully extend vascularized composite allograft perfusion cold storage for 24 h in a rat hindlimb model without significant edema or cell death.
Collapse
Affiliation(s)
- Po’okela K. Ng
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dor Yoeli
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Joy L. Huang
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yuhuan Luo
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Yong Wang
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bing Li
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhaohui Wang
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jesse Schold
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Swati Jain
- Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO
| | - An-Jey A. Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David W. Mathes
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kia M. Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Evan Farkash
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Alkesh H. Jani
- Department of Medicine, University of Colorado Anschutz Medical Campus , Aurora, CO
| | - Christene A. Huang
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Siemionow M, Chambily L, Brodowska S. Efficacy of Engraftment and Safety of Human Umbilical Di-Chimeric Cell (HUDC) Therapy after Systemic Intraosseous Administration in an Experimental Model. Biomedicines 2024; 12:1064. [PMID: 38791026 PMCID: PMC11117770 DOI: 10.3390/biomedicines12051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo study, we assessed HUDC safety and biodistribution in the NOD SCID mouse model at 90 days following the systemic intraosseous administration of HUDCs. Twelve NOD SCID mice (n = 6/group) received intraosseous injection of donor UCB cells (3.0 × 106) in Group 1, or HUDCs (3.0 × 106) in Group 2, without immunosuppression. Flow cytometry assessed hematopoietic cell surface markers in peripheral blood and the presence of HLA-ABC class I antigens in lymphoid and non-lymphoid organs. HUDC safety was assessed by weekly evaluations, magnetic resonance imaging (MRI), and at autopsy for tumorigenicity. At 90 days after intraosseous cell administration, the comparable expression of HLA-ABC class I antigens in selected organs was found in UCB control and HUDC therapy groups. MRI and autopsy confirmed safety by no signs of tumor growth. This study confirmed HUDC biodistribution to selected lymphoid organs following intraosseous administration, without immunosuppression. These data introduce HUDCs as a novel promising approach for immunomodulation in transplantation.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
- Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
| |
Collapse
|
6
|
Tratnig-Frankl P, Andrews AR, Berkane Y, Guinier C, Goutard M, Lupon E, Lancia HH, Morrison ML, Roth MB, Randolph MA, Cetrulo CL, Lellouch AG. Exploring Iodide and Hydrogen Sulfide as ROS Scavengers to Delay Acute Rejection in MHC-Defined Vascularized Composite Allografts. Antioxidants (Basel) 2024; 13:531. [PMID: 38790636 PMCID: PMC11118872 DOI: 10.3390/antiox13050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Vascularized composite allografts (VCA) face ischemic challenges due to their limited availability. Reperfusion following ischemia triggers oxidative stress and immune reactions, and scavenger molecules could mitigate ischemia-reperfusion injuries and, therefore, immune rejection. We compared two scavengers in a myocutaneous flap VCA model. In total, 18 myocutaneous flap transplants were performed in Major histocompatibility complex (MHC)-defined miniature swine. In the MATCH group (n = 9), donors and recipients had minor antigen mismatch, while the animals were fully mismatched in the MISMATCH group (n = 9). Grafts were pretreated with saline, sodium iodide (NaI), or hydrogen sulfide (H2S), stored at 4 °C for 3 h, and then transplanted. Flaps were monitored until clinical rejection without immunosuppression. In the MATCH group, flap survival did not significantly differ between the saline and hydrogen sulfide treatments (p = 0.483) but was reduced with the sodium iodide treatment (p = 0.007). In the MISMATCH group, survival was similar between the saline and hydrogen sulfide treatments (p = 0.483) but decreased with the sodium iodide treatment (p = 0.007). Rhabdomyolysis markers showed lower but non-significant levels in the experimental subgroups for both the MATCH and MISMATCH animals. This study provides insightful data for the field of antioxidant-based approaches in VCA and transplantation.
Collapse
Affiliation(s)
- Philipp Tratnig-Frankl
- Division of Plastic, Reconstructive and Aesthetic Surgery, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Alec R. Andrews
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU de Rennes, University of Rennes, 35000 Rennes, France
| | - Claire Guinier
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Department of Plastic Surgery, NOVO Hospital, 95300 Pontoise, France
| | - Marion Goutard
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Elise Lupon
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- Department of Plastic and Reconstructive Surgery, Institut Universitaire Locomoteur et du Sport, Pasteur 2 Hospital, University Côte d’Azur, 06300 Nice, France
| | - Hyshem H. Lancia
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Michael L. Morrison
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (M.L.M.); (M.B.R.)
| | - Mark B. Roth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (M.L.M.); (M.B.R.)
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (A.R.A.); (C.G.); (M.G.); (E.L.); (H.H.L.); (M.A.R.); (A.G.L.)
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- Shriners Children’s Boston, Boston, MA 02114, USA
- INSERM UMRS 1140 Innovation Thérapeutique en Hémostase, University of Paris, 75006 Paris, France
| |
Collapse
|
7
|
Huelsboemer L, Boroumand S, Kochen A, Dony A, Moscarelli J, Hauc SC, Stögner VA, Formica RN, Pomahac B, Kauke-Navarro M. Immunosuppressive strategies in face and hand transplantation: a comprehensive systematic review of current therapy regimens and outcomes. FRONTIERS IN TRANSPLANTATION 2024; 3:1366243. [PMID: 38993787 PMCID: PMC11235358 DOI: 10.3389/frtra.2024.1366243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 07/13/2024]
Abstract
Background Recipients of Vascularized Composite Allotransplants require effective immunosuppressive therapy to prevent graft rejection. This systematic review summarizes the current body of literature on immunosuppressive regimens used in face and hand transplants while summarizing their outcome in terms of rejection, renal failure, and infections. Methods A systematic search of electronic databases was conducted to identify relevant studies from 1998 until July 1st, 2023. We included all studies that discussed immunosuppressive strategies in face and hand transplant recipients according to PRISMA. Results The standard triple maintenance therapy was mostly adjusted due to nephrotoxicity or high incidence of rejection. The most common alternative treatments utilized were sirolimus (25/91; 27.5%) or everolimus (9/91; 9.9%) following hand- and photophoresis (7/45; 15.6%), sirolimus (5/45; 11.1%) or belatacept (1/45; 2.2%) following face transplantation. Episodes of rejection were reported in 60 (65.9%) of hand- and 33 (73%) of face transplant patients respectively. Graft loss of 12 (13.2%) hand and 4 (8.9%) face transplants was reported. Clinical CMV infection was observed in 6 (6.6%) hand and 7 (15.5%) face transplant recipients. Conclusions Based on the herein presented data, facial grafts exhibited a heightened incidence of rejection episodes and CMV infections. Facial mucosa adds complexity to the immunological graft composition highlighting the need of individualized immunosuppressive regimens and further research.
Collapse
Affiliation(s)
- Lioba Huelsboemer
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Sam Boroumand
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Alejandro Kochen
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
- Regenerative Wound Healing Center, Yale School of Medicine, New Haven, CT, United States
| | - Alna Dony
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Jake Moscarelli
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Sacha C Hauc
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Viola A Stögner
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Richard N Formica
- Department of Medicine, Section of Nephrology and Transplantation, Yale School of Medicine, New Haven, CT, United States
| | - Bohdan Pomahac
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Reconstructive and Plastic Surgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Sun J(A, Adil A, Biniazan F, Haykal S. Immunogenicity and tolerance induction in vascularized composite allotransplantation. FRONTIERS IN TRANSPLANTATION 2024; 3:1350546. [PMID: 38993748 PMCID: PMC11235364 DOI: 10.3389/frtra.2024.1350546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 07/13/2024]
Abstract
Vascularized composite allotransplantation (VCA) is the transplantation of multiple tissues such as skin, muscle, bone, nerve, and vessels, as a functional unit (i.e., hand or face) to patients suffering from major tissue trauma and functional deficits. Though the surgical feasibility has been optimized, issues regarding graft rejection remains. VCA rejection involves a diverse population of cells but is primarily driven by both donor and recipient lymphocytes, antigen-presenting cells, macrophages, and other immune as well as donor-derived cells. In addition, it is commonly understood that different tissues within VCA, such as the skin, elicits a stronger rejection response. Currently, VCA recipients are required to follow potent and lifelong immunosuppressing regimens to maximize graft survival. This puts patients at risk for malignancies, opportunistic infections, and cancers, thereby posing a need for less perilous methods of inducing graft tolerance. This review will provide an overview of cell populations and mechanisms, specific tissue involved in VCA rejection, as well as an updated scope of current methods of tolerance induction.
Collapse
Affiliation(s)
- Jiahui (Angela) Sun
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Felor Biniazan
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
von Reiterdank IF, Tawa P, Berkane Y, de Clermont-Tonnerre E, Dinicu A, Pendexter C, Goutard M, Lellouch AG, van der Molen ABM, Coert JH, Cetrulo CL, Uygun K. Sub-Zero Non-Freezing of Vascularized Composite Allografts Preservation in Rodents. RESEARCH SQUARE 2023:rs.3.rs-3750450. [PMID: 38234765 PMCID: PMC10793490 DOI: 10.21203/rs.3.rs-3750450/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Ischemia is a major limiting factor in Vascularized Composite Allotransplantation (VCA) as irreversible muscular injury can occur after as early as 4-6 hours of static cold storage (SCS). Organ preservation technologies have led to the development of storage protocols extending rat liver ex vivo preservation up to 4 days. Development of such a protocol for VCAs has the added challenge of inherent ice nucleating factors of the graft, therefore this study focused on developing a robust protocol for VCA supercooling. Rodent partial hindlimbs underwent subnormothermic machine perfusion (SNMP) with several loading solutions, followed by cryoprotective agent (CPA) cocktail developed for VCAs. Storage occurred in suspended animation for 24h and VCAs were recovered using SNMP with modified Steen. This study shows a robust VCA supercooling preservation protocol in a rodent model. Further optimization is expected to allow for its application in a transplantation model, which would be a breakthrough in the field of VCA preservation.
Collapse
Affiliation(s)
- Irina Filz von Reiterdank
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Pierre Tawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Paris Saint-Joseph
| | - Yanis Berkane
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes
| | | | - Antonia Dinicu
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Casie Pendexter
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Marion Goutard
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Paris Saint-Joseph
| | - Alexandre G Lellouch
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006
| | - Aebele B Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University
| | - J Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht University
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Derpartment of Surgery, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
10
|
Siemionow M, Cwykiel J, Brodowska S, Chambily L. Human Multi-Chimeric Cell (HMCC) Therapy as a Novel Approach for Tolerance Induction in Transplantation. Stem Cell Rev Rep 2023; 19:2741-2755. [PMID: 37603137 PMCID: PMC10661767 DOI: 10.1007/s12015-023-10608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Cellular therapies are regarded as the most promising approach for inducing transplant tolerance without life-long immunosuppression in solid organ and vascularized composite allotransplantation (VCA). Currently, no therapies are achieving this goal. This study introduces a novel Human Multi-Chimeric Cell (HMCC) line created by fusion of umbilical cord blood (UCB) cells, from three unrelated donors as an alternative therapeutic approach to bone marrow transplantation and tolerance induction in solid organ and VCA transplants. We performed eighteen ex vivo polyethylene glycol mediated fusions of human UCB cells from three unrelated donors to create HMCC. Mononuclear cells labeled with PKH26, PKH67, and eFluor™ 670 fluorescent dyes were fused and sorted creating a new population of triple-labeled (PKH26/PKH67/eFluor™ 670) HMCC. The creation of HMCC from three unrelated human UCB donors was confirmed by flow cytometry and confocal microscopy. Genotyping analyses determined the tri-chimeric state of HMCC by presence of parent alleles and selected loci specific for each of three UCB donors. Phenotype characterization confirmed hematopoietic markers distribution, comparable to UCB donors. HMCC maintained viability and displayed a low apoptosis level. The COMET assay revealed absence of genotoxicity, confirming fusion safety. Colony forming units assay showed clonogenic properties of HMCC. This study confirmed the feasibility of HMCC creation from three unrelated human UCB donors and characterized tri-chimeric state, hematopoietic phenotype, viability, safety, and clonogenic properties of HMCC. The created HMCC line, representing genotype characteristics of three unrelated human UCB donors, introduces a novel therapeutic approach for bone marrow, solid organ, and VCA transplants.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Traumatology, Orthopaedics and Hand Surgery, Poznan University of Medical Sciences, Poznan, Poland.
- Department of Orthopaedics, University of Illinois at Chicago, 900 South Ashland Ave., Room# 3356, Molecular Biology Research Building, Chicago, IL, 60607, USA.
| | - Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, 900 South Ashland Ave., Room# 3356, Molecular Biology Research Building, Chicago, IL, 60607, USA
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, 900 South Ashland Ave., Room# 3356, Molecular Biology Research Building, Chicago, IL, 60607, USA
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, 900 South Ashland Ave., Room# 3356, Molecular Biology Research Building, Chicago, IL, 60607, USA
| |
Collapse
|
11
|
Berkane Y, Hayau J, Filz von Reiterdank I, Kharga A, Charlès L, Mink van der Molen AB, Coert JH, Bertheuil N, Randolph MA, Cetrulo CL, Longchamp A, Lellouch AG, Uygun K. Supercooling: A Promising Technique for Prolonged Organ Preservation in Solid Organ Transplantation, and Early Perspectives in Vascularized Composite Allografts. FRONTIERS IN TRANSPLANTATION 2023; 2:1269706. [PMID: 38682043 PMCID: PMC11052586 DOI: 10.3389/frtra.2023.1269706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/29/2023] [Indexed: 05/01/2024]
Abstract
Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Justine Hayau
- Division of Plastic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anil Kharga
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Abele B. Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hôpital Sud, CHU Rennes, University of Rennes, Rennes, France
- MOBIDIC, UMR INSERM 1236, Rennes University Hospital, Rennes, France
| | - Mark A. Randolph
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Alban Longchamp
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Vascular Surgery, Lausanne University Hospital, Lausanne, Switzerland
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
| | - Korkut Uygun
- Shriners Children’s Boston, Harvard Medical School, Boston, MA, United States
- Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplant Sciences, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Wang S, Song G, Barkestani MN, Tobiasova Z, Wang Q, Jiang Q, Lopez R, Adelekan-Kamara Y, Fan M, Pober JS, Tellides G, Jane-wit D. Hedgehog costimulation during ischemia-reperfusion injury potentiates cytokine and homing responses of CD4 + T cells. Front Immunol 2023; 14:1248027. [PMID: 37915586 PMCID: PMC10616247 DOI: 10.3389/fimmu.2023.1248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Ischemia reperfusion injury (IRI) confers worsened outcomes and is an increasing clinical problem in solid organ transplantation. Previously, we identified a "PtchHi" T-cell subset that selectively received costimulatory signals from endothelial cell-derived Hedgehog (Hh) morphogens to mediate IRI-induced vascular inflammation. Methods Here, we used multi-omics approaches and developed a humanized mouse model to resolve functional and migratory heterogeneity within the PtchHi population. Results Hh-mediated costimulation induced oligoclonal and polyclonal expansion of clones within the PtchHi population, and we visualized three distinct subsets within inflamed, IRI-treated human skin xenografts exhibiting polyfunctional cytokine responses. One of these PtchHi subsets displayed features resembling recently described T peripheral helper cells, including elaboration of IFN-y and IL-21, expression of ICOS and PD-1, and upregulation of positioning molecules conferring recruitment and retention within peripheral but not lymphoid tissues. PtchHi T cells selectively homed to IRI-treated human skin xenografts to cause accelerated allograft loss, and Hh signaling was sufficient for this process to occur. Discussion Our studies define functional heterogeneity among a PtchHi T-cell population implicated in IRI.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Guiyu Song
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mahsa Nouri Barkestani
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Zuzana Tobiasova
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Qianxun Wang
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Quan Jiang
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Roberto Lopez
- Yale College, Yale University, New Haven, CT, United States
| | | | - Matthew Fan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Jordan S. Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Dan Jane-wit
- Department of Cardiology, West Haven Veterans Affairs (VA) Medical Center, West Haven, CT, United States
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|