1
|
Zhang X, Zhu T, Li Z, Jia Z, Wang Y, Liu R, Yang M, Chen QB, Wang Z, Guo S, Li P. Natural variation and domestication selection of ZmSULTR3;4 is associated with maize lateral root length in response to salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:992799. [PMID: 36388478 PMCID: PMC9644038 DOI: 10.3389/fpls.2022.992799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Soil salinity is a major constraint that restricts crop productivity worldwide. Lateral roots (LRs) are important for water and nutrient acquisition, therefore understanding the genetic basis of natural variation in lateral root length (LRL) is of great agronomic relevance to improve salt tolerance in cultivated germplasms. Here, using a genome-wide association study, we showed that the genetic variation in ZmSULTR3;4, which encodes a plasma membrane-localized sulfate transporter, is associated with natural variation in maize LRL under salt stress. The transcript of ZmSULTR3;4 was found preferentially in the epidermal and vascular tissues of root and increased by salt stress, supporting its essential role in the LR formation under salt stress. Further candidate gene association analysis showed that DNA polymorphisms in the promoter region differentiate the expression of ZmSULTR3;4 among maize inbred lines that may contribute to the natural variation of LRL under salt stress. Nucleotide diversity and neutrality tests revealed that ZmSULTR3;4 has undergone selection during maize domestication and improvement. Overall, our results revealed a regulatory role of ZmSULTR3;4 in salt regulated LR growth and uncovered favorable alleles of ZmSULTR3;4, providing an important selection target for breeding salt-tolerant maize cultivar.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tianze Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhi Li
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhongtao Jia
- Key Laboratory of Plant-Soil Interactions, Ministry of Education (MOE), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qing-Bin Chen
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhenjie Wang
- Sanya Institute, Henan University, Sanya, Hainan, China
| | - Siyi Guo
- Sanya Institute, Henan University, Sanya, Hainan, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Vatov E, Zentgraf U, Ludewig U. Moderate DNA methylation changes associated with nitrogen remobilization and leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4733-4752. [PMID: 35552412 PMCID: PMC9366325 DOI: 10.1093/jxb/erac167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The lifespan of plants is restricted by environmental and genetic components. Following the transition to reproductive growth, leaf senescence ends cellular life in monocarpic plants to remobilize nutrients to storage organs. In Arabidopsis, we initially observed altered leaf to seed ratios, faster senescence progression, altered leaf nitrogen recovery after transient nitrogen removal, and ultimately enhanced nitrogen remobilization from the leaves in two methylation mutants (ros1 and the triple dmr1/2 cmt3 knockout). Analysis of the DNA methylome in wild type Col-0 leaves identified an initial moderate decline of cytosine methylation with progressing leaf senescence, predominantly in the CG context. Late senescence was associated with moderate de novo methylation of cytosines, primarily in the CHH context. Relatively few differentially methylated regions, including one in the ROS1 promoter linked to down-regulation of ROS1, were present, but these were unrelated to known senescence-associated genes. Differential methylation patterns were identified in transcription factor binding sites, such as the W-boxes that are targeted by WRKYs. Methylation in artificial binding sites impaired transcription factor binding in vitro. However, it remains unclear how moderate methylome changes during leaf senescence are linked with up-regulated genes during senescence.
Collapse
Affiliation(s)
- Emil Vatov
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
- Center for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, D-72076, Germany
| | - Ulrike Zentgraf
- Center for Molecular Biology of Plants (ZMBP), University of Tübingen, Tübingen, D-72076, Germany
| | | |
Collapse
|
3
|
Plant DNA Methylation Responds to Nutrient Stress. Genes (Basel) 2022; 13:genes13060992. [PMID: 35741754 PMCID: PMC9222553 DOI: 10.3390/genes13060992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Nutrient stress as abiotic stress has become one of the important factors restricting crop yield and quality. DNA methylation is an essential epigenetic modification that can effectively regulate genome stability. Exploring DNA methylation responses to nutrient stress could lay the foundation for improving plant tolerance to nutrient stress. This article summarizes the plant DNA methylation patterns, the effects of nutrient stress, such as nitrogen, phosphorus, iron, zinc and sulfur stress, on plant DNA methylation and research techniques for plant DNA methylation, etc. Our discussion provides insight for further research on epigenetics response to nutrient stress in the future.
Collapse
|
4
|
Duarte GT, Pandey PK, Vaid N, Alseekh S, Fernie AR, Nikoloski Z, Laitinen RAE. Plasticity of rosette size in response to nitrogen availability is controlled by an RCC1-family protein. PLANT, CELL & ENVIRONMENT 2021; 44:3398-3411. [PMID: 34228823 DOI: 10.1111/pce.14146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/12/2023]
Abstract
Nitrogen (N) is fundamental to plant growth, development and yield. Genes underlying N utilization and assimilation are well-characterized, but mechanisms underpinning plasticity of different phenotypes in response to N remain elusive. Here, using Arabidopsis thaliana accessions, we dissected the genetic architecture of plasticity in early and late rosette diameter, flowering time and yield, in response to three levels of N in the soil. Furthermore, we found that the plasticity in levels of primary metabolites were related with the plasticities of the studied traits. Genome-wide association analysis identified three significant associations for phenotypic plasticity, one for early rosette diameter and two for flowering time. We confirmed that the gene At1g19880, hereafter named as PLASTICITY OF ROSETTE TO NITROGEN 1 (PROTON1), encoding for a regulator of chromatin condensation 1 (RCC1) family protein, conferred plasticity of rosette diameter in response to N. Treatment of PROTON1 T-DNA line with salt implied that the reduced plasticity of early rosette diameter was not a general growth response to stress. We further showed that plasticities of growth and flowering-related traits differed between environmental cues, indicating decoupled genetic programs regulating these traits. Our findings provide a prospective to identify genes that stabilize performance under fluctuating environments.
Collapse
Affiliation(s)
- Gustavo Turqueto Duarte
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Prashant K Pandey
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- National Research Council Canada (NRC-CNRC), Aquatic and Crop Resource Development (ACRD), Saskatoon, Saskatchewan, Canada
| | - Neha Vaid
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Saleh Alseekh
- Central Metabolism - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Plant Metabolomics, Center of Plant Systems Biology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Plant Metabolomics, Center of Plant Systems Biology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Bioinformatics and Mathematical Modeling, Center of Plant Systems Biology, Plovdiv, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Roosa A E Laitinen
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Jia Z, Bienert MD, von Wirén N, Bienert GP. Genome-wide association mapping identifies HvNIP2;2/HvLsi6 accounting for efficient boron transport in barley. PHYSIOLOGIA PLANTARUM 2021; 171:809-822. [PMID: 33481273 DOI: 10.1111/ppl.13340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.
Collapse
Affiliation(s)
- Zhongtao Jia
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manuela Désirée Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gerd Patrick Bienert
- Department of Physiology and Cell Biology, Metalloid Transport, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Crop Physiology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|