1
|
Jardim AMDRF, de Morais JEF, de Souza LSB, de Souza CAA, Araújo Júnior GDN, Alves CP, da Silva GÍN, Leite RMC, de Moura MSB, de Lima JLMP, da Silva TGF. Monitoring Energy Balance, Turbulent Flux Partitioning, Evapotranspiration and Biophysical Parameters of Nopalea cochenillifera (Cactaceae) in the Brazilian Semi-Arid Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2562. [PMID: 37447125 PMCID: PMC10346497 DOI: 10.3390/plants12132562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The in-situ quantification of turbulent flux and evapotranspiration (ET) is necessary to monitor crop performance in stressful environments. Although cacti can withstand stressful conditions, plant responses and plant-environment interactions remain unclear. Hence, the objective of our study was to investigate the interannual and seasonal behaviour of components of the surface energy balance, environmental conditions, morphophysiological parameters, biomass yield and water relations in a crop of Nopalea cochenillifera in the semi-arid region of Brazil. The data were collected from a micrometeorological tower between 2015 and 2017. The results demonstrate that net radiation was significantly higher during the wet season. Latent heat flux was not significant between the wet season and dry season. During the dry-wet transition season in particular, sensible heat flux was higher than during the other seasons. We observed a large decline in soil heat flux during the wet season. There was no difference in ET during the wet or dry seasons; however, there was a 40% reduction during the dry-wet transition. The wet seasons and wet-dry transition showed the lowest Evaporative Stress Index. The plants showed high cladode water content and biomass during the evaluation period. In conclusion, these findings indicate high rates of growth, high biomass and a high cladode water content and explain the response of the cactus regarding energy partitioning and ET.
Collapse
Affiliation(s)
- Alexandre Maniçoba da Rosa Ferraz Jardim
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
- Department of Biodiversity, Institute of Bioscience, São Paulo State University—UNESP, Av. 24A, 1515, Rio Claro 13506-900, São Paulo, Brazil
| | - José Edson Florentino de Morais
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - Luciana Sandra Bastos de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - Carlos André Alves de Souza
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | - George do Nascimento Araújo Júnior
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Cléber Pereira Alves
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Gabriel Ítalo Novaes da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
| | - Renan Matheus Cordeiro Leite
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| | | | - João L. M. P. de Lima
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Department of Civil Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-788 Coimbra, Portugal;
| | - Thieres George Freire da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, Pernambuco, Brazil; (G.d.N.A.J.); (C.P.A.); (G.Í.N.d.S.); (T.G.F.d.S.)
- Academic Unit of Serra Talhada, Federal Rural University of Pernambuco, Gregório Ferraz Nogueira Avenue, s/n, Serra Talhada 56909-535, Pernambuco, Brazil; (J.E.F.d.M.); (L.S.B.d.S.); (C.A.A.d.S.); (R.M.C.L.)
| |
Collapse
|
2
|
d’Aquino L, Cozzolino R, Nardone G, Borelli G, Gambale E, Sighicelli M, Menegoni P, Modarelli GC, Rimauro J, Chianese E, Nenna G, Fasolino T, D’Urso G, Montoro P. Effects of White and Blue-Red Light on Growth and Metabolism of Basil Grown under Microcosm Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1450. [PMID: 37050076 PMCID: PMC10097113 DOI: 10.3390/plants12071450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Indoor farming of basil (Ocimum basilicum L.) under artificial lighting to support year-round produce demand is an area of increasing interest. Literature data indicate that diverse light regimes differently affect downstream metabolic pathways which influence basil growth, development and metabolism. In this study, basil was grown from seedlings to fully developed plants in a microcosm, an innovative device aimed at growing plants indoor as in natural conditions. Specifically, the effects of white (W) and blue-red (BR) light under a photosynthetic photon flux density of 255 μmol m-2 s-1 on plant growth, photochemistry, soluble nutrient concentration and secondary metabolism were investigated. Plants grew taller (41.8 ± 5.0 vs. 28.4 ± 2.5 cm) and produced greater biomass (150.3 ± 24.2/14.7 ± 2.0 g vs. 116.2 ± 28.3/12.3 ± 2.5 g fresh/dry biomass) under W light compared to BR light. The two lighting conditions differently influenced the soluble nutrient concentration and the translocation rate. No photosynthetic stress was observed under the two lighting regimes, but leaves grown under W light displayed higher levels of maximum quantum yield of PSII and electron transport rate. Sharp differences in metabolic patterns under the two lighting regimes were detected with higher concentrations of phenolic compounds under the BR light.
Collapse
Affiliation(s)
- Luigi d’Aquino
- ENEA, Portici Research Centre, Piazzale E. Fermi 1, Napoli, 80055 Portici, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Council of Research, Via Roma 64, 83100 Avellino, Italy
| | | | - Gianni Borelli
- Becar S.r.l. (Beghelli Group), Viale della Pace 1, Monteveglio, 40050 Bologna, Italy
| | - Emilia Gambale
- ENEA, Portici Research Centre, Piazzale E. Fermi 1, Napoli, 80055 Portici, Italy
| | - Maria Sighicelli
- ENEA, Casaccia Research Centre, Via Anguillarese 301, Santa Maria di Galeria, 00060 Roma, Italy
| | - Patrizia Menegoni
- ENEA, Casaccia Research Centre, Via Anguillarese 301, Santa Maria di Galeria, 00060 Roma, Italy
| | - Giuseppe Carlo Modarelli
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Napoli, 80055 Portici, Italy
| | - Juri Rimauro
- ENEA, Portici Research Centre, Piazzale E. Fermi 1, Napoli, 80055 Portici, Italy
| | - Elena Chianese
- Department of Science and Technology, University of Naples Parthenope, Isola C4, Centro Direzionale di Napoli, 80143 Napoli, Italy
| | - Giuseppe Nenna
- ENEA, Portici Research Centre, Piazzale E. Fermi 1, Napoli, 80055 Portici, Italy
| | - Tommaso Fasolino
- ENEA, Portici Research Centre, Piazzale E. Fermi 1, Napoli, 80055 Portici, Italy
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Salerno, 84084 Fisciano, Italy
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Salerno, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Modarelli GC, Vanacore L, Rouphael Y, Langellotti AL, Masi P, De Pascale S, Cirillo C. Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:1355. [PMID: 36987043 PMCID: PMC10053589 DOI: 10.3390/plants12061355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Basil crops are appreciated for their distinct flavour and appeal to various cuisines globally. Basil production is mainly implemented in controlled environment agriculture (CEA) systems. Soil-less cultivation (e.g., hydroponic) is optimal for producing basil, while aquaponics is another technique suitable for leafy crops such as basil. Shortening the production chain through efficient cultivation techniques reduces basil production's carbon footprint. While the organoleptic quality of basil demonstrably benefits from successive cuts, no studies have compared the impact of this practice under hydroponic and aquaponic CEA conditions. Hence, the present study evaluated the eco-physiological, nutritional, and productive performance of Genovese basil cv. Sanremo grown in hydroponic and aquaponic systems (combined with tilapia) and harvested consecutively. The two systems showed similar eco-physiological behaviour and photosynthetic capacity, which were on average 2.99 µmol of CO2 m-2 s-1, equal numbers of leaves, and fresh yields of on average 41.69 and 38.38 g, respectively. Aquaponics yielded greater dry biomass (+58%) and dry matter content (+37%), while the nutrient profiles varied between the systems. The number of cuts did not influence yield; however, it improved dry matter partitioning and elicited a differential nutrient uptake. Our results bear practical and scientific relevance by providing useful eco-physiological and productive feedback on basil CEA cultivation. Aquaponics is a promising technique that reduces chemical fertiliser input and increases the overall sustainability of basil production.
Collapse
Affiliation(s)
- Giuseppe Carlo Modarelli
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Lucia Vanacore
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Antonio Luca Langellotti
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
4
|
Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interest for wild edible plants as functional food is increasing among consumers in the Mediterranean countries because of their high content of antioxidants. However, a critical point is the seasonality of wild edible species due to their spontaneity and the cultivation results necessary to satisfy market requests. Moreover, cooking may be necessary for most wild edible species to enhance their palatability. In the present experiment, the crop yield, total phenolic content (TPC) and antioxidant activity (AA) of leaves were determined in three wild edible species (Borago officinalis L., Malva sylvestris L. and Plantago coronopus L.), which were hydroponically cultivated in winter and in spring. Plants were recurrently harvested three times and the leaves were analyzed raw or after boiling in water for different times based on their palatability as evaluated by a hedonic test (2 min for B. officinalis, 2.5 min for M. sylvestris and 8 min for P. coronopus). The total crop yield was promising, especially for P. coronopus, with small differences between winter and spring (9.3 and 13.8 kg m−2, respectively). The boiling treatment caused a loss of TPC and, in some cases, of the AA in B. officinalis and M. sylvestris due to the solubilization of phenolic and other antioxidant compounds in boiling water. Conversely, in P. coronopus, TPC and AA were higher in boiled leaves than in fresh leaves, likely due to the strong binding of phenolic compounds to the cell wall. This binding might lead to the inefficient extraction of these compounds through the boiling treatment.
Collapse
|
5
|
Ciriello M, Formisano L, Soteriou GA, Kyratzis A, De Pascale S, Kyriacou MC, Rouphael Y. Differential Response to NaCl Osmotic Stress in Sequentially Harvested Hydroponic Red and Green Basil and the Role of Calcium. FRONTIERS IN PLANT SCIENCE 2022; 13:799213. [PMID: 35356126 PMCID: PMC8959763 DOI: 10.3389/fpls.2022.799213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/10/2022] [Indexed: 05/14/2023]
Abstract
Basil (Ocimum basilicum L.) is a heterogeneous reservoir of bioactive compounds that provide recognized benefits to human health, rendering it a model aromatic herb. Notwithstanding the application of nutritional stress, such as sodium chloride (NaCl) salinity, which mainly affects the primary metabolism, it also triggers adaptive mechanisms that involve the production of bioactive secondary metabolites. Genotype selection and the exogenous application of calcium chloride (CaCl2) help minimize salinity's suppressive effects on growth. In the present study, we hypothesize that the ratio of different salt types may induce differential responses in the function of preharvest factors in hydroponic basil culture. In this perspective, the stock nutrient solution (Control) was supplemented with 12.5 mm NaCl + 8.33 mm CaCl2 (Moderate Mix), 25 mm NaCl (Moderate NaCl), 25 mm NaCl + 16.66 of CaCl2 (High Mix), or 50 mM of NaCl (High NaCl) with the objective of evaluating the different impact of salinity on yield, sensory quality (color and aroma profile), and the accumulation of minerals and bioactive compounds in two successive harvests of green and red basil cultivars. Although more productive (+39.0% fresh weight) than the red one, the green cultivar exhibited higher susceptibility to salinity, especially under the High Mix and High NaCl treatments. The addition of CaCl2 to the High Mix solution reduced the sodium by 70.4% and increased the total polyphenols by 21.5% compared to the equivalent isomolar solution (High NaCl). The crop performance in terms of fresh and dry yield improved for both cultivars at the second cut. Regardless of cultivar and salt treatment, successive harvests also increased the concentration of phenols and vitamin C (29.7 and 61.5%, respectively) while reducing (-6.9%) eucalyptol, the most abundant aromatic compound in both cultivars. Salinity, as well as the mechanical stress induced by cutting, improved the functional quality of basil. However, the productive responses to the conditions imposed in our work once again highlighted the importance of genetic background. Specifically, CaCl2 in the Moderate Mix solution preserved fresh leaf weight in the most stress-sensitive green cultivar.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Angelos Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Youssef Rouphael,
| |
Collapse
|
6
|
Machado RMA, Alves-Pereira I, Faty Y, Perdigão S, Ferreira R. Influence of Nitrogen Sources Applied by Fertigation to an Enriched Soil with Organic Compost on Growth, Mineral Nutrition, and Phytochemicals Content of Coriander ( Coriandrum sativum L.) in Two Successive Harvests. PLANTS (BASEL, SWITZERLAND) 2021; 11:22. [PMID: 35009025 PMCID: PMC8747198 DOI: 10.3390/plants11010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The aim of the present study was to evaluate the effects of nitrogen source applied by fertigation to an enriched soil with organic compost on plant growth, mineral nutrition, and phytochemical contents in two successive harvests in coriander. The treatments were as follows: unfertilized soil, soil enriched with organic compost, and soil enriched with organic compost to which 60 kg N ha-1 as ammonium nitrate and as ammonium sulfate applied by fertigation were added. Ammonium nitrate addition allowed to obtain a high total fresh yield (3.6 kg m-2) with a low inorganic nitrogen input. Ammonium nitrate increased plant shoot dry weight; fresh yield; and shoot N, K, and Ca uptake in the first harvest. Ammonium nitrate relative to organic compost and to ammonium sulfate increased fresh yield by approximately 57 and 25%, respectively. However, ammonium sulfate in the first harvest greatly increased shoot total phenols, from 137 mgGAE/100 g FW in ammonium nitrate to 280.4 mgGAE/100 g FW. Coriander's fresh yield, in the second harvest, was unaffected by nitrogen addition. However, ammonium nitrate increased shoot total phenols and FRAP activity. Overall, the shoot phytochemical accumulation in the second harvest was lower than in the first. The combined application of ammonium nitrate and organic compost is a strategy to reduce inorganic nitrogen application.
Collapse
Affiliation(s)
- Rui M. A. Machado
- MED—Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal
| | - Isabel Alves-Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal;
| | - Yasmin Faty
- Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal; (Y.F.); (S.P.)
| | - Sara Perdigão
- Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal; (Y.F.); (S.P.)
| | - Rui Ferreira
- MED—Mediterranean Institute for Agriculture, Environment and Development, Departamento de Química e Bioquímica, Escola de Ciências e Tecnologia, Universidade de Évora, 7002-554 Evora, Portugal;
| |
Collapse
|
7
|
Comite E, El-Nakhel C, Rouphael Y, Ventorino V, Pepe O, Borzacchiello A, Vinale F, Rigano D, Staropoli A, Lorito M, Woo SL. Bioformulations with Beneficial Microbial Consortia, a Bioactive Compound and Plant Biopolymers Modulate Sweet Basil Productivity, Photosynthetic Activity and Metabolites. Pathogens 2021; 10:pathogens10070870. [PMID: 34358020 PMCID: PMC8308691 DOI: 10.3390/pathogens10070870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing attention is being given to the development of innovative formulations to substitute the use of synthetic chemicals to improve agricultural production and resource use efficiency. Alternatives can include biological products containing beneficial microorganisms and bioactive metabolites able to inhibit plant pathogens, induce systemic resistance and promote plant growth. The efficacy of such bioformulations can be increased by the addition of polymers as adjuvants or carriers. Trichoderma afroharzianum T22, Azotobacter chroococcum 76A and 6-pentyl-α-pyrone (6PP; a Trichoderma secondary metabolite) were administrated singularly or in a consortium, with or without a carboxymethyl cellulose-based biopolymer (BP), and tested on sweet basil (Ocimum basilicum L.) grown in a protected greenhouse. The effect of the treatments on basil yield, photosynthetic activity and secondary metabolites production was assessed. Photosynthetic efficiency was augmented by the applications of the bioformulations. The applications to the rhizosphere with BP + 6PP and BP + T22 + 76A increased the total fresh weight of basil by 26.3% and 23.6%, respectively. Untargeted LC-MS qTOF analysis demonstrated that the plant metabolome was significantly modified by the treatments. Quantification of the profiles for the major phenolic acids indicated that the treatment with the T22 + 76A consortium increased rosmarinic acid content by 110%. The use of innovative bioformulations containing microbes, their metabolites and a biopolymer was found to modulate the cultivation of fresh basil by improving yield and quality, thus providing the opportunity to develop farming systems with minimal impact on the environmental footprint from the agricultural production process.
Collapse
Affiliation(s)
- Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
| | - Assunta Borzacchiello
- National Research Council, Institute for Composite Polymers and Biomaterials, 80125 Napoli, Italy;
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (V.V.); (O.P.); (A.S.); (M.L.)
| | - Sheridan L. Woo
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
8
|
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y. An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil ( Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens 2021; 10:797. [PMID: 34201640 PMCID: PMC8308794 DOI: 10.3390/pathogens10070797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.
Collapse
Affiliation(s)
- Sergio Saia
- Department Veterinary Sciences, University of Pisa, via delle Piagge 2, 56129 Pisa, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Paolo Bonini
- NGAlab, La Riera de Gaia, 43762 Tarragona, Spain
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
9
|
Corrado G, De Micco V, Lucini L, Miras-Moreno B, Senizza B, Zengin G, El-Nakhel C, De Pascale S, Rouphael Y. Isosmotic Macrocation Variation Modulates Mineral Efficiency, Morpho-Physiological Traits, and Functional Properties in Hydroponically Grown Lettuce Varieties ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:678799. [PMID: 34149779 PMCID: PMC8212932 DOI: 10.3389/fpls.2021.678799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The management of mineral elements in agriculture is important for their nutritional role for plants and dietary value for humans, sparking interest in strategies that can increase mineral use efficiency and accumulation in plant food. In this work, we evaluated the effects of the isosmotic variations of the concentration on three macrocations (K, Ca, and Mg) in lettuce (Lactuca sativa L.). Our aim was to improve the nutritional components of this valuable dietary source of minerals. Using a full factorial design, we analyzed mineral utilization efficiency (UtE), leaf morphology, gas exchange parameters, phenolic profiles (through ultra-high performance liquid chromatography coupled to a quadrupole-time-of-flight (UHPLC-QTOF) mass spectrometry), and enzymatic activities in two phytochemically diverse butterhead lettuce varieties (red or green). Plants were fed in hydroponics with three nutrient solutions (NSs) with different ratios of K, Ca, and Mg. The variation of these minerals in the edible product was associated with alterations of the morphology and physiology of the leaves, and of the quality and functional properties of lettuce, with a trade-off between total accumulation and mineral UtE. Moreover, in non-limiting conditions of nutrient availability, significant mineral interactions were also present. The flexibility of the plant response to the different ratios of macrocations, and the observed large intraspecific variation, were adequate to provide mineral-specific phytochemical profiles to the edible product. Specifically, the full-red lettuce provided more interesting results in regard to the compositional and functional attributes of the leaves.
Collapse
Affiliation(s)
- Giandomenico Corrado
- Deparment of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Veronica De Micco
- Deparment of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Selcuk University, Konya, Turkey
| | - Christophe El-Nakhel
- Deparment of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Deparment of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Deparment of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
10
|
Ciriello M, Formisano L, El-Nakhel C, Kyriacou MC, Soteriou GA, Pizzolongo F, Romano R, De Pascale S, Rouphael Y. Genotype and Successive Harvests Interaction Affects Phenolic Acids and Aroma Profile of Genovese Basil for Pesto Sauce Production. Foods 2021; 10:278. [PMID: 33573127 PMCID: PMC7911349 DOI: 10.3390/foods10020278] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Basil (Ocimum basilicum L.) is an essential ingredient of the Mediterranean cuisine due to its distinctive aroma. Genovese basil leaves are used to prepare "pesto", a condiment that has always caught the interest of consumers and producers. Usually, basil for industrial processing is harvested more than once to extract a higher yield. However, successive cuts can affect quality traits that play a crucial role in defining the product's final sensory profile. This research was aimed to evaluate the impact of cut on the quantitative and qualitative properties of three Genovese basil cultivars (Aroma 2, Eleonora and Italiano Classico) grown in an open field. Nitrate content, phenolic acids and aromatic profile were determined by ion chromatography (IC), high-performance liquid chromatography (HPLC), and gas chromatography coupled to a mass spectrometer (GC/MS) analysis, respectively. The second harvest increased fresh biomass and total phenolic acids content by 172% and 413%, respectively, with Italiano Classico recording the highest values. The combination of second-cut Aroma 2 yielded the lowest nitrate (473.8 mg kg-1 of fresh weight) and Eugenol (2.4%) levels. In the second harvest, Eleonora showed an increase in eugenol and trans-α-bergamotene of 75.3% and 48.2%, respectively; whereas, eucalyptol and β-cis-ocimene decreased by 34.4% and 51.6%, respectively. Although successive harvests may increase basil yield and quality overall, the cultivar-dependent response to successive cuts needs to be accounted for in order to accomplish standardization of industrial "pesto" sauce.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Georgios A. Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (L.F.); (C.E.-N.); (F.P.); (R.R.); (S.D.P.)
| |
Collapse
|
11
|
Intraspecific Variability Largely Affects the Leaf Metabolomics Response to Isosmotic Macrocation Variations in Two Divergent Lettuce ( Lactuca sativa L.) Varieties. PLANTS 2021; 10:plants10010091. [PMID: 33466229 PMCID: PMC7824788 DOI: 10.3390/plants10010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
Mineral elements are essential for plant growth and development and strongly affect crop yield and quality. To cope with an everchanging environment, plants have developed specific responses to combined nutrient variations. In this work, we investigated the effects of multifactorial treatments with three macrocations (K, Ca, and Mg) on lettuce (Lactuca sativa L.) varieties that strongly diverge in leaf pigmentation (full red or green). Specifically, we monitored main leaf parameters and metabolomics profiles of hydroponically grown plants fed with isosmotic nutrient solutions that have different proportions of macroelements. The result revealed a high biochemical plasticity of lettuce, significantly affected by the genotype, the nutrient solution, and their interaction. Our work also provided evidence and insights into the different intraspecific responses to multifactorial variation of macrocations, with two varieties having distinct strategies to metabolically respond to nutrient variation. Overall, plant adaptive mechanisms increased the phytochemical diversity between the varieties both among and within the main classes of plant secondary metabolites. Finally, our work also implies that the interaction of a pre-existing phytochemical diversity with the management of multiple mineral elements can offer added health-related benefits to the edible product specific to the variety.
Collapse
|
12
|
Ciriello M, Formisano L, El-Nakhel C, Corrado G, Pannico A, De Pascale S, Rouphael Y. Morpho-Physiological Responses and Secondary Metabolites Modulation by Preharvest Factors of Three Hydroponically Grown Genovese Basil Cultivars. FRONTIERS IN PLANT SCIENCE 2021; 12:671026. [PMID: 33981328 PMCID: PMC8107287 DOI: 10.3389/fpls.2021.671026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Sweet basil (Ocimum basilicum L.) is an economically important leafy vegetable especially in Mediterranean countries. In Italian gastronomy, the large elliptical leaves of the Genovese type are mostly used for the well-known pesto sauce, and almost all (>90%) professional production is for the food industry. The growing demand for fresh leaves with standardized technological and sensory characteristics has prompted basil producers to adopt advanced cultivation methods such as the floating raft system (FRS). The aim of this study was to evaluate the productive, qualitative, and physiological performance of three Genovese basil cultivars ("Aroma 2," "Eleonora," and "Italiano Classico") in two successive harvests and at two densities (159 and 317 plants m-2). Caffeic, chicoric, rosmarinic, and ferulic acid were determined through the high-performance liquid chromatography (HPLC) system, whereas the extraction and quantification of the volatile organic compounds (VOCs) were performed by solid-phase microextraction (SPME) and gas chromatography coupled to a mass spectrometer (GC/MS). "Aroma 2" showed the highest fresh yield and photosynthetic rate together with the lowest nitrate content. For all the tested cultivars, the higher density, while reducing the number of leaves per plant, resulted in higher fresh and dry production per unit area, without altering the aroma profile. Successive harvests resulted in a significant increase in both the yield (37.5%) and the total phenolic acids (75.1%) and favored Eucalyptol and 1-octen-3-ol accumulation (+25.9 and +15.1%, respectively). The here presented comprehensive and multifactorial assessment of the productive and qualitative response of basil provides evidence of the positive effects (from biomass to specialized metabolites) that can be obtained from the management of the pre-harvest factors in soilless cultivation. In addition, it also highlights the role and constraints of the genetic factor in the observed response. We also discuss the implications of our work considering the impact for the food processing industry. Future research may explore the phenolic acids accumulation as a possible fortification means to extend the pesto sauce shelf life, reducing the need of added antioxidants and thermal processing.
Collapse
|
13
|
Ciriello M, Pannico A, El-Nakhel C, Formisano L, Cristofano F, Duri LG, Pizzolongo F, Romano R, De Pascale S, Colla G, Cardarelli M, Rouphael Y. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1786. [PMID: 33339286 PMCID: PMC7767113 DOI: 10.3390/plants9121786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m-1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m-1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m-1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (-44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles.
Collapse
Affiliation(s)
- Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Luigi Giuseppe Duri
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura e L’Analisi Dell’Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, 84098 Pontecagnano Faiano, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (M.C.); (A.P.); (C.E.-N.); (L.F.); (F.C.); (L.G.D.); (F.P.); (R.R.); (S.D.P.)
| |
Collapse
|
14
|
Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nutritional eustress such as salinity or nutrient stress applied in soilless systems, is a convenient pre-harvest factor efficient in modulating the phytochemical components of horticultural crops, by triggering defensive mechanisms and accumulating plant secondary metabolites in plants tissues. Nevertheless, genetic material (cultivars with different pigmentation) dictates lettuce metabolites and physiological response to extrinsic eustress, with red leaf cultivars being highly nutrient packed notwithstanding the stress. Product quality can be meliorated equally by applying several cuts, a practice proven to increase bioactive compounds accumulation. In this study, we analyzed the effects of four salinity levels (1, 10, 20 and 30 mM NaCl) on green and red pigmented Salad Bowl lettuce (Lactuca sativa L. var. acephala) in two successive harvests cultivated in a floating raft system. The morphological parameters, mineral composition, leaf gas exchanges, bioactive compounds, and antioxidant activity of both cultivars were assessed. The green cultivar exhibited superior crop productivity but was more prone to salinity effect than the red cultivar. Irrespective of cultivar and cut order, the net photosynthesis decreased with increasing salinity in the nutrient solution. The second cut incurred higher dry biomass, greater accumulation of most minerals and higher photosynthetic activity. In red lettuce, 20 mM NaCl proved adequate eustress to increase phytonutrients and beneficial minerals (K, Ca, and Mg) with minimal loss of yield. Mild salinity and sequential harvest have proven effective pre-harvest tools in positively modulating the quality of lettuce. Eustress interaction with genotype was demonstrated as a promising field for future breeding programs targeting select genotypes for agronomic application of eustress to improve the nutraceutical value of vegetable crops.
Collapse
|