1
|
Vráblová M, Smutná K, Chamrádová K, Vrábl D, Koutník I, Rusín J, Bouchalová M, Gavlová A, Sezimová H, Navrátil M, Chalupa R, Tenklová B, Pavlíková J. Co-composting of sewage sludge as an effective technology for the production of substrates with reduced content of pharmaceutical residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169818. [PMID: 38184247 DOI: 10.1016/j.scitotenv.2023.169818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Sewage sludge is a valuable source of elements such as phosphorus and nitrogen. At the same time, heavy metals, emerging organic compounds, micropollutants (pharmaceuticals, pesticides, PCPs, microplastics), or some potentially dangerous bacteria can be present. In this study, the sewage sludge was aerobically treated by composting with other materials (co-composted), and the resulting substrate was tested for suitability of its use in agriculture. Closer attention was focused on the pharmaceuticals (non-steroidal antiphlogistics, sartanes, antiepileptics, caffeine, and nicotine metabolites) content and ecotoxicity of the resulting substrates in the individual phases of sludge co-composting. It has been verified that during co-composting there is a potential for reduction of the content of pharmaceutical in the substrates up to 90 %. The course of the temperature in the thermophilic phase is decisive. Growth and ecotoxicity experiments demonstrated that with a suitable co-composting procedure, the resulting stabilized matter is suitable as a substrate for use in plant production, and the risk of using sewage sludge on agricultural land is substantially reduced.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Chamrádová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Daniel Vrábl
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Jiří Rusín
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Markéta Bouchalová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Anna Gavlová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Hana Sezimová
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Martin Navrátil
- University of Ostrava, Faculty of Science, Department of Physics, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Richard Chalupa
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Barbora Tenklová
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| | - Jitka Pavlíková
- FCC Česká republika, s.r.o., Ďáblická 791/89, 182 00 Praha, Czech Republic
| |
Collapse
|
2
|
da Silva MB, de Camargos LS, Teixeira Filho MCM, Souza LA, Coscione AR, Lavres J, Abreu-Junior CH, He Z, Zhao F, Jani AD, Capra GF, Nogueira TAR. Residual effects of composted sewage sludge on nitrogen cycling and plant metabolism in a no-till common bean-palisade grass-soybean rotation. FRONTIERS IN PLANT SCIENCE 2023; 14:1281670. [PMID: 37929176 PMCID: PMC10622979 DOI: 10.3389/fpls.2023.1281670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Introduction and aims In the context of increasing population and decreasing soil fertility, food security is one of humanity's greatest challenges. Large amounts of waste, such as sewage sludge, are produced annually, with their final disposal causing environmental pollution and hazards to human health. Sludge has high amounts of nitrogen (N), and, when safely recycled by applying it into the soil as composted sewage sludge (CSS), its residual effect may provide gradual N release to crops. A field study was conducted in the Brazilian Cerrado. The aims were to investigate the residual effect of successive applications of CSS as a source of N in the common bean (Phaseolus vulgaris L. cv. BRS Estilo)-palisade grass (Urochloa brizantha (A.Rich.) R.D. Webster)-soybean (Glycine max L.) rotation under no-tillage. Additionally, N cycling was monitored through changes in N metabolism; the efficiency of biological N2 fixation (BNF) and its implications for plant nutrition, development, and productivity, was also assessed. Methods The experiment consisted of a randomized complete block design comparing four CSS rates (10, 15, 20, and 25 Mg ha-1, wet basis) to a control treatment (without adding mineral or organic fertilizer) over two crop years. Multiple plant and soil analyses (plant development and crop yield, Falker chlorophyll index (FCI), enzymatic, biochemical, 15N natural abundance, was evaluated, root and shoot N accumulation, etc.) were evaluated. Results and discussion Results showed that CSS: i) maintained adequate N levels for all crops, increasing their productivity; ii) promoted efficient BNF, due to the stability of ureide metabolism in plants and increased protein content; iii) increased the nitrate content and the nitrate reductase activity in soybean; iv) affected urease activity and ammonium content due to changes in the plant's urea metabolism; v) increased N accumulation in the aerial part of palisade grass. Composted sewage sludge can be used as an alternative source to meet crops' N requirements, promoting productivity gains and N cycling through forage and improving N metabolism.
Collapse
Affiliation(s)
- Mariana Bocchi da Silva
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, SP, Brazil
| | - Liliane Santos de Camargos
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, SP, Brazil
| | | | - Lucas Anjos Souza
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rio Verde, GO, Brazil
| | - Aline Renée Coscione
- Center of Soils and Environmental Resources of the Campinas Agronomic Institute, Campinas, SP, Brazil
| | - José Lavres
- Center for Nuclear Energy in Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | | | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Fengliang Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Arun Dilipkumar Jani
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, CA, United States
| | - Gian Franco Capra
- Dipartimento di Architettura, Design e Urbanistica, Università Degli Studi di Sassari, Sassari, Italy
- Desertification Research Centre, Università Degli Studi di Sassari, Sassari, Italy
| | - Thiago Assis Rodrigues Nogueira
- Department of Plant Protection, Rural Engineering, and Soils, São Paulo State University, Ilha Solteira, SP, Brazil
- Department of Agricultural Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, SP, Brazil
| |
Collapse
|
3
|
Li J, Liu X, Zhu C, Luo L, Chen Z, Jin S, Geng B. Influences of human waste-based ectopic fermentation bed fillers on the soil properties and growth of Chinese pakchoi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69903-69917. [PMID: 35579832 DOI: 10.1007/s11356-022-20636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
The reuse of human wastes as biofertilizer resources offers a new option for meeting the growing demand for food and addressing poor soil productivity. Feces and black water are ubiquitous human wastes that usually require proper treatment, such as composting and anaerobic digestion, to remove potentially harmful substances before they can be applied as fertilizers. As an effective treatment technology for livestock farming wastes, the ectopic fermentation bed system (EFS) provides a new means of treating human waste and producing organic fertilizer from decomposed filler. Therefore, the objective of this study was to evaluate and compare the nutrient content and fertilizer potential of decomposed fillers obtained after EFS treatment of human feces and black water under different application conditions. The results showed that the application of fillers increased the yield of pakchoi by 3.60⁓29.32% and nutrient uptake by 8.09⁓83.45% compared to the CK, which could effectively promote the growth of pakchoi. This approach also improved the quality of pakchoi and enhanced soil fertility, and differences were observed in the effects of different kinds and application amounts of fillers. Soil EC was the soil property that had the greatest effect on the growth characteristics of pakchoi in this study. These findings help to better clarify the agronomic value of human wastes, but the effects of long-term filler application need to be further explored.
Collapse
Affiliation(s)
- Jiabin Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xue Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Changxiong Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Liangguo Luo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhuobo Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Shan Jin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Bing Geng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
4
|
Cardoso PHS, Gonçalves PWB, Alves GDO, Pegoraro RF, Fernandes LA, Frazão LA, Sampaio RA. Improving the quality of organic compost of sewage sludge using grass cultivation followed by composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115076. [PMID: 35447451 DOI: 10.1016/j.jenvman.2022.115076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Composting is one of the main processes of stabilization of sewage sludge and its association with cultivation in this residue has a great potential to produce stabilized organic fertilizer and, or substrate for plant development. The aim of this work was to evaluate the physical, chemical, and microbial attributes of sewage sludge (SS) aerated and cultivated with Pennisetum purpureum or Urochloa brizantha and, later, composted. The study was installed in a 2x2+2 factorial scheme, with four replications. The factors consisted of cultivation of P. purpureum or U. brizantha in SS for 90 days, with or without intermittent aeration for 60 days. The control treatments were SS without cultivation, with the presence or absence of aeration. After 90 days of cultivation, the grass was cut, crushed, and incorporated into the SS for composting for 60 days. The composted sewage sludge showed an increase of 26, 24, 17, 123, 19, 32, and 7.7% in the levels of P, Ca, Cu, Fe, Mn, Zn, and Pb; and a reduction of 22, 5.2, 26, 30, 8.8, and 70% in the levels of C, N, K, Mg, Ni, and Na, respectively. The levels of Cu, Ni, Zn, and Pb remained below the maximum limit allowed by environmental resolution. The degradation of SS decreased the particle diameter, increasing the bulk density and total porosity, improving the physical properties of the compost. The SS cultivation and composting, regardless of the grass, led to a reduction in pH, basal and accumulated respiration, nitrification index, and C/N ratio and an increase in the CEC/C ratio, showing adequate maturation of the compost produced. Thus, the SS cultivation and composting with grasses were effective for producing matured and quality organic compost with low risk of environmental contamination.
Collapse
Affiliation(s)
- Paulo Henrique Silveira Cardoso
- Center of Nuclear Energy in Agriculture, Universidade de São Paulo (USP), Av. Centenário, 303, Piracicaba, SP 13416-000, Brazil.
| | - Paula Wellen Barbosa Gonçalves
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Path of Access Prof. Paulo Donato Castellane, Km 5, Jaboticabal, SP 14884-900, Brazil
| | - Gustavo de Oliveira Alves
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Universitária, 1000, Montes Claros, MG 39400-090, Brazil
| | - Rodinei Facco Pegoraro
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Universitária, 1000, Montes Claros, MG 39400-090, Brazil
| | - Luiz Arnaldo Fernandes
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Universitária, 1000, Montes Claros, MG 39400-090, Brazil
| | - Leidivan Almeida Frazão
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Universitária, 1000, Montes Claros, MG 39400-090, Brazil
| | - Regynaldo Arruda Sampaio
- Institute of Agrarian Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Universitária, 1000, Montes Claros, MG 39400-090, Brazil
| |
Collapse
|