1
|
Wang L, Huang J, Chen S, Su X, Zhang X, Wang L, Zhang W, Wang Z, Zeng Q, Wang Q, Li Y. Endogenous cell wall degrading enzyme LytD is important for the biocontrol activity of Bacillus subtilis. FRONTIERS IN PLANT SCIENCE 2024; 15:1381018. [PMID: 38660441 PMCID: PMC11039861 DOI: 10.3389/fpls.2024.1381018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
Autolysins are endogenous cell wall degrading enzymes (CWDEs) in bacteria that remodel the peptidoglycan layer of its own cell wall. In the Bacillus subtilis genome, at least 35 autolysin genes have been identified. However, the study of their roles in bacterial physiology has been hampered by their complexity and functional redundancy. B. subtilis GLB191 is an effective biocontrol strain against grape downy mildew disease, the biocontrol effect of which results from both direct effect against the pathogen and stimulation of the plant defense. In this study, we show that the autolysin N-acetylglucosaminidase LytD, a major autolysin of vegetative growth in B. subtilis, plays an important role in its biocontrol activity against grape downy mildew. Disruption of lytD resulted in reduced suppression of the pathogen Plasmopara viticola and stimulation of the plant defense. LytD is also shown to affect the biofilm formation and colonization of B. subtilis on grape leaves. This is the first report that demonstrates the role of an endogenous CWDE in suppressing plant disease infection of a biological control microorganism. These findings not only expand our knowledge on the biological function of autolysins but also provide a new target to promote the biocontrol activity of B. subtilis.
Collapse
Affiliation(s)
- Luotao Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianquan Huang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Si Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Su
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xun Zhang
- Airport Research Institute, China Academy of Civil Aviation Science and Technology, Beijing, China
| | - Lujun Wang
- Weinan Grapevine Research Institute, Weinan, China
| | - Wei Zhang
- Weinan Grapevine Research Institute, Weinan, China
| | - Zhenshuo Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qingchao Zeng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Raio A, Brilli F, Neri L, Baraldi R, Orlando F, Pugliesi C, Chen X, Baccelli I. Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1235669. [PMID: 37849842 PMCID: PMC10577304 DOI: 10.3389/fpls.2023.1235669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
The bacterium Stenotrophomonas rhizophila is known to be beneficial for plants and has been frequently isolated from the rhizosphere of crops. In the present work, we isolated from the phyllosphere of an ornamental plant an epiphytic strain of S. rhizophila that we named Ep2.2 and investigated its possible application in crop protection. Compared to S. maltophilia LMG 958, a well-known plant beneficial species which behaves as opportunistic human pathogen, S. rhizophila Ep2.2 showed distinctive features, such as different motility, a generally reduced capacity to use carbon sources, a greater sensitivity to fusidic acid and potassium tellurite, and the inability to grow at the human body temperature. S. rhizophila Ep2.2 was able to inhibit in vitro growth of the plant pathogenic fungi Alternaria alternata and Botrytis cinerea through the emission of volatile compounds. Simultaneous PTR-MS and GC-MS analyses revealed the emission, by S. rhizophila Ep2.2, of volatile organic compounds (VOCs) with well-documented antifungal activity, such as furans, sulphur-containing compounds and terpenes. When sprayed on tomato leaves and plants, S. rhizophila Ep2.2 was able to restrict B. cinerea infection and to prime the expression of Pti5, GluA and PR1 plant defense genes.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Luisa Neri
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Rita Baraldi
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Francesca Orlando
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| |
Collapse
|
3
|
Plant-Microbe Interaction: Mining the Impact of Native Bacillus amyloliquefaciens WS-10 on Tobacco Bacterial Wilt Disease and Rhizosphere Microbial Communities. Microbiol Spectr 2022; 10:e0147122. [PMID: 35913211 PMCID: PMC9430121 DOI: 10.1128/spectrum.01471-22] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia solanacearum, the causative agent of bacterial wilt disease, has been a major threat to tobacco production globally. Several control methods have failed. Thus, it is imperative to find effective management for this disease. The biocontrol agent Bacillus amyloliquefaciens WS-10 displayed a significant control effect due to biofilm formation, and secretion of hydrolytic enzymes and exopolysaccharides. In addition, strain WS-10 can produce antimicrobial compounds, which was confirmed by the presence of genes encoding antimicrobial lipopeptides (fengycin, iturin, surfactin, and bacillomycinD) and polyketides (difficidin, bacilysin, bacillibactin, and bacillaene). Strain WS-10 successfully colonized tobacco plant roots and rhizosphere soil and suppressed the incidence of bacterial wilt disease up to 72.02% by reducing the R. solanacearum population dynamic in rhizosphere soil. Plant-microbe interaction was considered a key driver of disease outcome. To further explore the impact of strain WS-10 on rhizosphere microbial communities, V3-V4 and ITS1 variable regions of 16S and ITS rRNA were amplified, respectively. Results revealed that strain WS-10 influences the rhizosphere microbial communities and dramatically changed the diversity and composition of rhizosphere microbial communities. Interestingly, the relative abundance of genus Ralstonia significantly decreased when treated with strain WS-10. A complex microbial co-occurrence network was present in a diseased state, and the introduction of strain WS-10 significantly changed the structure of rhizosphere microbiota. This study suggests that strain WS-10 can be used as a novel biocontrol agent to attain sustainability in disease management due to its intense antibacterial activity, efficient colonization in the host plant, and ability to transform the microbial community structure toward a healthy state. IMPORTANCE The plant rhizosphere acts as the first line of defense against the invasion of pathogens. The perturbation in the rhizosphere microbiome is directly related to plant health and disease development. The introduction of beneficial microorganisms in the soil shifted the rhizosphere microbiome, induced resistance in plants, and suppressed the incidence of soilborne disease. Bacillus sp. is widely used as a biocontrol agent against soilborne diseases due to its ability to produce broad-spectrum antimicrobial compounds and colonization with the host plant. In our study, we found that the application of native Bacillus amyloliquefaciens WS-10 significantly suppressed the incidence of tobacco bacterial wilt disease by shifting the rhizosphere microbiome and reducing the interaction between rhizosphere microorganisms and bacterial wilt pathogen.
Collapse
|
4
|
Zhang R, Ouyang J, Xu X, Li J, Rehman M, Deng G, Shu J, Zhao D, Chen S, Sayyed RZ, Fahad S, Chen Y. Nematicidal Activity of Burkholderia arboris J211 Against Meloidogyne incognita on Tobacco. Front Microbiol 2022; 13:915546. [PMID: 35756018 PMCID: PMC9226767 DOI: 10.3389/fmicb.2022.915546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Root-knot nematode (Meloidogyne incognita) is the most widespread nematode affecting Solanaceae crops. Due to the lack of effective measures to control this nematode, its management can be achieved, using biocontrol agents. This study investigated in vitro efficacy of the antagonistic bacterial strain J211 isolated from tobacco rhizosphere soil against M. incognita, and further assessed its role in controlling nematodes, both in pot and field trials. Phylogenetic analysis of the 16S rRNA gene sequence of strain J211 assigned to Burkholderia arboris. Culture filtrates B. arboris J211 exhibited anematicidal activity against the second-stage juveniles (J2s) of M. incognita, with a 96.6% mortality after 24 h exposure. Inoculation of J211 in tobacco roots significantly reduced the root galling caused by M. incognita, both in pot and field trials. Meanwhile, plant growth-promoting (PGP) traits results showed that J211 had outstanding IAA-producing activity, and the IAA production reached 66.60 mg L−1. In the field study, B. arboris J211 also promoted tobacco growth and increase flue-cured tobacco yield by 8.7–24.3%. Overall, B. arboris J211 as a high-yielding IAA nematicidal strain effectively controlled M. incognita and improved tobacco yield making it a promising alternative bionematocide.
Collapse
Affiliation(s)
- Renjun Zhang
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,Yunnan Engineering Research Center of Microbial Agents, Yunnan University, Kunming, China.,School of Life Science, Yunnan University, Kunming, China
| | - Jin Ouyang
- Kunming Branch of Yunnan Tobacco Company, Kunming, China
| | - Xingyang Xu
- Kunming Branch of Yunnan Tobacco Company, Kunming, China
| | - Jie Li
- Kunming Branch of Yunnan Tobacco Company, Kunming, China
| | | | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, China
| | - Jie Shu
- School of Life Science, Yunnan University, Kunming, China
| | - Dake Zhao
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,Yunnan Engineering Research Center of Microbial Agents, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Suiyun Chen
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China.,Yunnan Engineering Research Center of Microbial Agents, Yunnan University, Kunming, China.,School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKVS Commerce College, Shahada, India
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China.,Department of Agronomy, The University of Haripur, Haripur, Pakistan
| | - Yaqiong Chen
- Kunming Branch of Yunnan Tobacco Company, Kunming, China
| |
Collapse
|
5
|
Li Z, Bai X, Jiao S, Li Y, Li P, Yang Y, Zhang H, Wei G. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance. MICROBIOME 2021; 9:217. [PMID: 34732249 PMCID: PMC8567675 DOI: 10.1186/s40168-021-01169-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant health and growth are negatively affected by pathogen invasion; however, plants can dynamically modulate their rhizosphere microbiome and adapt to such biotic stresses. Although plant-recruited protective microbes can be assembled into synthetic communities for application in the control of plant disease, rhizosphere microbial communities commonly contain some taxa at low abundance. The roles of low-abundance microbes in synthetic communities remain unclear; it is also unclear whether all the microbes enriched by plants can enhance host adaptation to the environment. Here, we assembled a synthetic community with a disease resistance function based on differential analysis of root-associated bacterial community composition. We further simplified the synthetic community and investigated the roles of low-abundance bacteria in the control of Astragalus mongholicus root rot disease by a simple synthetic community. RESULTS Fusarium oxysporum infection reduced bacterial Shannon diversity and significantly affected the bacterial community composition in the rhizosphere and roots of Astragalus mongholicus. Under fungal pathogen challenge, Astragalus mongholicus recruited some beneficial bacteria such as Stenotrophomonas, Achromobacter, Pseudomonas, and Flavobacterium to the rhizosphere and roots. We constructed a disease-resistant bacterial community containing 10 high- and three low-abundance bacteria enriched in diseased roots. After the joint selection of plants and pathogens, the complex synthetic community was further simplified into a four-species community composed of three high-abundance bacteria (Stenotrophomonas sp., Rhizobium sp., Ochrobactrum sp.) and one low-abundance bacterium (Advenella sp.). Notably, a simple community containing these four strains and a thirteen-species community had similar effects on the control root rot disease. Furthermore, the simple community protected plants via a synergistic effect of highly abundant bacteria inhibiting fungal pathogen growth and less abundant bacteria activating plant-induced systemic resistance. CONCLUSIONS Our findings suggest that bacteria with low abundance play an important role in synthetic communities and that only a few bacterial taxa enriched in diseased roots are associated with disease resistance. Therefore, the construction and simplification of synthetic communities found in the present study could be a strategy employed by plants to adapt to environmental stress. Video abstract.
Collapse
Affiliation(s)
- Zhefei Li
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoli Bai
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Jiao
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanmei Li
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peirong Li
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Yang
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gehong Wei
- State key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Effects of Nanoparticles on Plant Growth-Promoting Bacteria in Indian Agricultural Soil. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030140] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Soil bacteria are some of the key players affecting plant productivity. Soil today is exposed to emerging contaminants like metal engineered nanoparticles. The objective of this study was to evaluate the toxicological effects of silver and zinc oxide nanoparticles on bacteria classified as plant growth-promoting bacteria. Three types of bacteria—nitrogen fixers, phosphate solubilizers, and biofilm formers—were exposed to engineered nanoparticles. Initially, the effect of silver and zinc oxide nanoparticles was determined on pure cultures of the bacteria. These nanoparticles were then applied to soil to assess changes in composition of bacterial communities. Impacts of the nanoparticles were analyzed using Illumina MiSeq sequencing of 16S rRNA genes. In the soil used, relative abundances of the dominant and agriculturally significant phyla, namely, Proteobacteria, Actinobacteria, and Firmicutes, were altered in the presence of silver nanoparticles. Silver nanoparticles changed the abundance of the three phyla by 25 to 45%. Zinc oxide nanoparticles showed negligible effects at the phylum level. Thus, silver nanoparticles may impact bacterial communities in soil, and this in turn may influence processes carried out by soil bacteria.
Collapse
|
7
|
Ma L, Zheng SC, Zhang TK, Liu ZY, Wang XJ, Zhou XK, Yang CG, Duo JL, Mo MH. Effect of nicotine from tobacco root exudates on chemotaxis, growth, biocontrol efficiency, and colonization by Pseudomonas aeruginosa NXHG29. Antonie Van Leeuwenhoek 2018; 111:1237-1257. [PMID: 29397489 DOI: 10.1007/s10482-018-1035-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/28/2018] [Indexed: 10/18/2022]
Abstract
Accumulated evidence suggests that root exudates have a major role in mediating plant-microbe interactions in the rhizosphere. Here, we characterized tobacco root exudates (TREs) by GC-MS and nicotine, scopoletin, and octadecane were identified as three main components of TREs. Qualitative and quantitative chemotaxis assays revealed that Pseudomonas aeruginosa NXHG29 with antagonistic activity displayed positive chemotactic responses towards TREs and their three main components (nicotine, scopoletin, octadecane) and its enhanced chemotaxis were induced by these substances in a concentration-dependent manner. Furthermore, following GC-MS and chemotaxis analysis, nicotine was selected as the target for evaluation of the effect on NXHG29 regarding antagonism, growth, root colonization and biocontrol efficiency. Results of in vitro studies showed that nicotine as a sole carbon source could enhance growth of NXHG29 and significantly increased the antagonism of NXHG29. We also demonstrated that nicotine exerted enhancing effects on the colonization ability of NXHG29 on tobacco roots by combining CLSM observations with investigation of population level dynamics by selective dilution plating method. Results from greenhouse experiments suggested nicotine exhibited stimulatory effects on the biocontrol efficiency of NXHG29 against bacterial wilt and black shank on tobacco. The stimulatory effect of nicotine was affected by the concentration and timing of nicotine application and further supported by the results of population level of NXHG29 on tobacco roots. This is the first report on the enhancement effect of nicotine from TREs on an antagonistic bacterium for its root colonization, control of soil-borne pathogens, regarding the chemotaxis and in vitro antagonism and growth.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No.2 Cuihubei road, Kunming, 650091, People's Republic of China.
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China.
| | - Shuai Chao Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No.2 Cuihubei road, Kunming, 650091, People's Republic of China
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Ti Kun Zhang
- Pu'er Branch of Yunnan Tobacco Company, Pu'er, 665000, People's Republic of China
- Yunnan Corporation of China National Tobacco Corporation, Kunming, 650202, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Zi Yi Liu
- Pu'er Branch of Yunnan Tobacco Company, Pu'er, 665000, People's Republic of China
- Yunnan Corporation of China National Tobacco Corporation, Kunming, 650202, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Xue Jian Wang
- Pu'er Branch of Yunnan Tobacco Company, Pu'er, 665000, People's Republic of China
- Yunnan Corporation of China National Tobacco Corporation, Kunming, 650202, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Xing Kui Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No.2 Cuihubei road, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Cheng Gang Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No.2 Cuihubei road, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Jin Ling Duo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No.2 Cuihubei road, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| | - Ming He Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, No.2 Cuihubei road, Kunming, 650091, People's Republic of China
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
- Biocontrol Engineering Research Center of Crop Disease & Pest, Yunnan University, Kunming, 650091, Yunnan Province, People's Republic of China
| |
Collapse
|
8
|
Quantitative proteomics revealed partial fungistatic mechanism of ammonia against conidial germination of nematode-trapping fungus Arthrobotrys oligospora ATCC24927. Int J Biochem Cell Biol 2018; 98:104-112. [PMID: 29544894 DOI: 10.1016/j.biocel.2018.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 11/20/2022]
Abstract
Ammonia is one of the fungistatic factors in soil that can suppress conidial germination, but the molecular mechanism underlying the suppression is unknown. In this study, the proteomes of fungistatic conidia, fresh conidia and germinated conidia of Arthrobotrys oligospora ATCC24927 were determined and quantified. The protein expression profile of fungistatic conidia was significantly different from those in the other two conditions. 281 proteins were down expressed in fungistatic conidia and characterized by GO annotation. Gene transcription analysis and inhibition of puromycin (a protein translation inhibitor) on conidial germination suggested that down expression of 33 protein translation related proteins might well result in repression of protein synthesis and inhibition of conidial germination. In addition, 16 down-expressed proteins were mapped to the Ras/mitogen-activated protein (Ras/MAP) regulatory networks which regulate conidial DNA synthesis. The conidial DNA synthesis was found to be definitely inhibited under by ammonia, and function studies of two Ras/MAP proteins by using knock-out strains provided partial evidence that Ras/MAP pathway regulate the conidial germination. These results suggested that down-expression of Ras/MAP related proteins might result in inhibition of DNA synthesis and finally result in inhibition conidial germination. This study revealed partial fungistatic mechanism of ammonia against conidial germination.
Collapse
|
9
|
Egamberdieva D, Wirth S, Behrendt U, Abd Allah EF, Berg G. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria. Front Microbiol 2016; 7:209. [PMID: 26941730 PMCID: PMC4766286 DOI: 10.3389/fmicb.2016.00209] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.
Collapse
Affiliation(s)
- Dilfuza Egamberdieva
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research Müncheberg, Germany
| | - Stephan Wirth
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research Müncheberg, Germany
| | - Undine Behrendt
- Institute for Landscape Biogeochemistry, Leibniz Centre for Agricultural Landscape Research Müncheberg, Germany
| | - Elsayed F Abd Allah
- Plant Production Department, Faculty of Food and Agricultural Sciences, King Saud University Riyadh, Saudi Arabia
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology Graz, Austria
| |
Collapse
|