1
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Sahle M, Subramanian SM, Saito O. Harnessing Insights from Indicators-Based Resilience Assessment for Enhancing Sustainability in the Gurage Socio-Ecological Production Landscape of Ethiopia. ENVIRONMENTAL MANAGEMENT 2023; 71:1269-1287. [PMID: 36749398 PMCID: PMC9904265 DOI: 10.1007/s00267-023-01794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2023] [Indexed: 05/15/2023]
Abstract
Even though the mosaic of different land-use/land-cover types has long contributed to the resilience of socio-ecological production landscapes and seascapes in Ethiopia, recent data indicate that their sustainability is under threat. This study aims to evaluate landscape resilience by adopting a set of indicators for enhancing sustainability in the Gurage socio-ecological production landscape in Ethiopia. The authors employed a toolkit of indicators in the production landscape through a community-based scoring approach (1-5 Likert scale). The information from household surveys, land-use/land-cover analysis, and satellite-based drought incidents assessment was integrated with the ranking analysis to support the evaluations. The results revealed that landscape diversity, ecosystem protection, local governance, and social equity indicators had the highest landscape resilience ranks. In contrast, lower ranks are associated with knowledge, innovation, livelihoods, and well-being indicators. The overall resilience of the Gurage socio-ecological production landscape was estimated to be below average. Thus, strategies that enhance the resilience and sustainability of this socio-ecological landscape are essential. The findings could help draw the attention of policymakers and natural resource managers to building and strengthening the resilience of the landscape. This study demonstrates that indicators could aid in evaluating landscape resilience status along with other ancillary information, particularly in data-sparse regions. Methods of assessing resilience must be creative in such regions, and this paper may inform such efforts. In addition, the study recommends that landscape resilience indicators be improved by reducing subjective matter and including spatial-explicit dimensions for evaluating resilience.
Collapse
Affiliation(s)
- Mesfin Sahle
- Institute for Global Environmental Strategies, Kanagawa, Japan.
- Department of Natural Resources Management, Wolkite University, Wolkite, Ethiopia.
| | - Suneetha M Subramanian
- United Nations University Institute for the Advanced Study of Sustainability, Tokyo, Japan
| | - Osamu Saito
- Institute for Global Environmental Strategies, Kanagawa, Japan
- United Nations University Institute for the Advanced Study of Sustainability, Tokyo, Japan
| |
Collapse
|
3
|
Droc G, Martin G, Guignon V, Summo M, Sempéré G, Durant E, Soriano A, Baurens FC, Cenci A, Breton C, Shah T, Aury JM, Ge XJ, Harrison PH, Yahiaoui N, D’Hont A, Rouard M. The banana genome hub: a community database for genomics in the Musaceae. HORTICULTURE RESEARCH 2022; 9:uhac221. [PMID: 36479579 PMCID: PMC9720444 DOI: 10.1093/hr/uhac221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
The Banana Genome Hub provides centralized access for genome assemblies, annotations, and the extensive related omics resources available for bananas and banana relatives. A series of tools and unique interfaces are implemented to harness the potential of genomics in bananas, leveraging the power of comparative analysis, while recognizing the differences between datasets. Besides effective genomic tools like BLAST and the JBrowse genome browser, additional interfaces enable advanced gene search and gene family analyses including multiple alignments and phylogenies. A synteny viewer enables the comparison of genome structures between chromosome-scale assemblies. Interfaces for differential expression analyses, metabolic pathways and GO enrichment were also added. A catalogue of variants spanning the banana diversity is made available for exploration, filtering, and export to a wide variety of software. Furthermore, we implemented new ways to graphically explore gene presence-absence in pangenomes as well as genome ancestry mosaics for cultivated bananas. Besides, to guide the community in future sequencing efforts, we provide recommendations for nomenclature of locus tags and a curated list of public genomic resources (assemblies, resequencing, high density genotyping) and upcoming resources-planned, ongoing or not yet public. The Banana Genome Hub aims at supporting the banana scientific community for basic, translational, and applied research and can be accessed at https://banana-genome-hub.southgreen.fr.
Collapse
Affiliation(s)
| | - Guillaume Martin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Valentin Guignon
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Marilyne Summo
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Guilhem Sempéré
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- CIRAD, UMR INTERTRYP, F-34398 Montpellier, France
- INTERTRYP, Université de Montpellier, CIRAD, IRD, 34398 Montpellier, France
| | - Eloi Durant
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Syngenta Seeds SAS, Saint-Sauveur, 31790, France
- DIADE, Univ Montpellier, CIRAD, IRD, Montpellier, 34830, France
| | - Alexandre Soriano
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Alberto Cenci
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Catherine Breton
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Pat Heslop Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Angélique D’Hont
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | | |
Collapse
|
4
|
Wang Z, Rouard M, Biswas MK, Droc G, Cui D, Roux N, Baurens FC, Ge XJ, Schwarzacher T, Heslop-Harrison P(JS, Liu Q. A chromosome-level reference genome of Ensete glaucum gives insight into diversity and chromosomal and repetitive sequence evolution in the Musaceae. Gigascience 2022; 11:giac027. [PMID: 35488861 PMCID: PMC9055855 DOI: 10.1093/gigascience/giac027] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ensete glaucum (2n = 2x = 18) is a giant herbaceous monocotyledonous plant in the small Musaceae family along with banana (Musa). A high-quality reference genome sequence assembly of E. glaucum is a resource for functional and evolutionary studies of Ensete, Musaceae, and the Zingiberales. FINDINGS Using Oxford Nanopore Technologies, chromosome conformation capture (Hi-C), Illumina and RNA survey sequence, supported by molecular cytogenetics, we report a high-quality 481.5 Mb genome assembly with 9 pseudo-chromosomes and 36,836 genes. A total of 55% of the genome is composed of repetitive sequences with predominantly LTR-retroelements (37%) and DNA transposons (7%). The single 5S ribosomal DNA locus had an exceptionally long monomer length of 1,056 bp, more than twice that of the monomers at multiple loci in Musa. A tandemly repeated satellite (1.1% of the genome, with no similar sequence in Musa) was present around all centromeres, together with a few copies of a long interspersed nuclear element (LINE) retroelement. The assembly enabled us to characterize in detail the chromosomal rearrangements occurring between E. glaucum and the x = 11 species of Musa. One E. glaucum chromosome has the same gene content as Musa acuminata, while others show multiple, complex, but clearly defined evolutionary rearrangements in the change between x= 9 and 11. CONCLUSIONS The advance towards a Musaceae pangenome including E. glaucum, tolerant of extreme environments, makes a complete set of gene alleles, copy number variation, and a reference for structural variation available for crop breeding and understanding environmental responses. The chromosome-scale genome assembly shows the nature of chromosomal fusion and translocation events during speciation, and features of rapid repetitive DNA change in terms of copy number, sequence, and genomic location, critical to understanding its role in diversity and evolution.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Alliance Bioversity and CIAT, CIRAD, INRAE, IRD, F-34398 Montpellier, France
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Gaetan Droc
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Alliance Bioversity and CIAT, CIRAD, INRAE, IRD, F-34398 Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Dongli Cui
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nicolas Roux
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Pat (J S) Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Rijzaani H, Bayer PE, Rouard M, Doležel J, Batley J, Edwards D. The pangenome of banana highlights differences between genera and genomes. THE PLANT GENOME 2022; 15:e20100. [PMID: 34227250 DOI: 10.1002/tpg2.20100] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 05/19/2023]
Abstract
Banana (Musaceae family) has a complex genetic history and includes a genus Musa with a variety of cultivated clones with edible fruits, Ensete species that are grown for their edible corm, and monospecific Musella whose generic status has been questioned. The most commonly exported banana cultivars belong to Cavendish, a subgroup of Musa triploid cultivars, which is under threat by fungal pathogens, though there are also related species M. balbisiana Colla (B genome), M. textilis Née (T genome), and M. schizocarpa N. W. Simmonds (S genome), along with hybrids of these genomes, which potentially host genes of agronomic interest. Here we present the first cross-genus pangenome of banana, which contains representatives of the Musa and Ensete genera. Clusters based on gene presence-absence variation (PAV) clearly separate Musa and Ensete, while Musa is split further based on species. These results present the first pangenome study across genus boundaries and identifies genes that differentiate between Musaceae species, information that may support breeding programs in these crops.
Collapse
Affiliation(s)
- Habib Rijzaani
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
- Indonesian Agency for Agricultural Research and Development, Jakarta, Indonesia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, 34397, France
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Gill M, Petereit J, Bayer PE, Finnegan PM, Batley J, Edwards D. Pangenomes as a Resource to Accelerate Breeding of Under-Utilised Crop Species. Int J Mol Sci 2022; 23:2671. [PMID: 35269811 PMCID: PMC8910360 DOI: 10.3390/ijms23052671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes are a rich resource to examine the genomic variation observed within a species or genera, supporting population genetics studies, with applications for the improvement of crop traits. Major crop species such as maize (Zea mays), rice (Oryza sativa), Brassica (Brassica spp.), and soybean (Glycine max) have had pangenomes constructed and released, and this has led to the discovery of valuable genes associated with disease resistance and yield components. However, pangenome data are not available for many less prominent crop species that are currently under-utilised. Despite many under-utilised species being important food sources in regional populations, the scarcity of genomic data for these species hinders their improvement. Here, we assess several under-utilised crops and review the pangenome approaches that could be used to build resources for their improvement. Many of these under-utilised crops are cultivated in arid or semi-arid environments, suggesting that novel genes related to drought tolerance may be identified and used for introgression into related major crop species. In addition, we discuss how previously collected data could be used to enrich pangenome functional analysis in genome-wide association studies (GWAS) based on studies in major crops. Considering the technological advances in genome sequencing, pangenome references for under-utilised species are becoming more obtainable, offering the opportunity to identify novel genes related to agro-morphological traits in these species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia; (C.G.T.F.); (B.J.N.); (M.F.D.); (M.G.); (J.P.); (P.E.B.); (P.M.F.); (J.B.)
| |
Collapse
|
7
|
Tesfamicael KG, Gebre E, March TJ, Sznajder B, Mather DE, Rodríguez López CM. Accumulation of mutations in genes associated with sexual reproduction contributed to the domestication of a vegetatively propagated staple crop, enset. HORTICULTURE RESEARCH 2020; 7:185. [PMID: 33328450 PMCID: PMC7603512 DOI: 10.1038/s41438-020-00409-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/29/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Enset (Ensete ventricosum (Welw.) Cheesman) is a drought tolerant, vegetatively propagated crop that was domesticated in Ethiopia. It is a staple food for more than 20 million people in Ethiopia. Despite its current importance and immense potential, enset is among the most genetically understudied and underexploited food crops. We collected 230 enset wild and cultivated accessions across the main enset producing regions in Ethiopia and applied amplified fragment length polymorphism (AFLP) and genotype by sequencing (GBS) analyses to these accessions. Wild and cultivated accessions were clearly separated from each other, with 89 genes found to harbour SNPs that separated wild from cultivated accessions. Among these, 17 genes are thought to be involved in flower initiation and seed development. Among cultivated accessions, differentiation was mostly associated with geographical location and with proximity to wild populations. Our results indicate that vegetative propagation of elite clones has favoured capacity for vegetative growth at the expense of capacity for sexual reproduction. This is consistent with previous reports that cultivated enset tends to produce non-viable seeds and flowers less frequently than wild enset.
Collapse
Affiliation(s)
- Kiflu Gebramicael Tesfamicael
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Endale Gebre
- Policy Study Institute, P.O. Box: 2479, Addis Ababa, Ethiopia
| | - Timothy J March
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Beata Sznajder
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Diane E Mather
- School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA, Australia
| | - Carlos Marcelino Rodríguez López
- Environmental Epigenetics and Genetics Group, Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
8
|
Biswas MK, Darbar JN, Borrell JS, Bagchi M, Biswas D, Nuraga GW, Demissew S, Wilkin P, Schwarzacher T, Heslop-Harrison JS. The landscape of microsatellites in the enset (Ensete ventricosum) genome and web-based marker resource development. Sci Rep 2020; 10:15312. [PMID: 32943659 PMCID: PMC7498607 DOI: 10.1038/s41598-020-71984-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022] Open
Abstract
Ensete ventricosum (Musaceae, enset) is an Ethiopian food security crop. To realize the potential of enset for rural livelihoods, further knowledge of enset diversity, genetics and genomics is required to support breeding programs and conservation. This study was conducted to explore the enset genome to develop molecular markers, genomics resources, and characterize enset landraces while giving insight into the organization of the genome. We identified 233 microsatellites (simple sequence repeats, SSRs) per Mbp in the enset genome, representing 0.28% of the genome. Mono- and di-nucleotide repeats motifs were found in a higher proportion than other classes of SSR-motifs. In total, 154,586 non-redundant enset microsatellite markers (EMM) were identified and 40 selected for primer development. Marker validation by PCR and low-cost agarose gel electrophoresis revealed that 92.5% were polymorphic, showing a high PIC (Polymorphism Information Content; 0.87) and expected heterozygosity (He = 0.79-0.82). In silico analysis of genomes of closely related species showed 46.86% of the markers were transferable among enset species and 1.90% were transferable to Musa. The SSRs are robust (with basic PCR methods and agarose gel electrophoresis), informative, and applicable in measuring enset diversity, genotyping, selection and potentially breeding. Enset SSRs are available in a web-based database at https://enset-project.org/EnMom@base.html (or https://enset.aau.edu.et/index.html , downloadable from Figshare).
Collapse
Affiliation(s)
- Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
| | - Jaypal N Darbar
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Mita Bagchi
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Dhiman Biswas
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, India
| | - Gizachew Woldesenbet Nuraga
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sebsebe Demissew
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, Surrey, UK
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.,South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - J S Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK. .,South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Tamrat S, Borrell JS, Biswas MK, Gashu D, Wondimu T, Vásquez-Londoño CA, Heslop-Harrison PJS, Demissew S, Wilkin P, Howes MJR. Micronutrient composition and microbial community analysis across diverse landraces of the Ethiopian orphan crop enset. Food Res Int 2020; 137:109636. [PMID: 33233215 DOI: 10.1016/j.foodres.2020.109636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Enset (Ensete ventricosum) is a major starch staple and food security crop for 20 million people. Despite substantial diversity in morphology, genetics, agronomy and utilization across its range, nutritional characteristics have only been reported in relatively few landraces. Here, we survey nutritional composition in 22 landraces from three enset growing regions. We present mineral characterization of enset corm tissue, free amino acid characterization of raw and processed (fermented) tissues and genomic analysis of the microbial community associated with fermentation. We show that compared to regionally important tubers and cereals, enset is high in calcium, iron, potassium and zinc and low in sodium. We report changes in free amino acid composition due to processing, and establish that the bacteria genera Acetobacter, Lactobacillus and Bifidobacterium, predominate during fermentation. Nutritional and microbial variation presents opportunities to select for improved composition, quality and safety with potentially significant impacts in food security and public health.
Collapse
Affiliation(s)
- Solomon Tamrat
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia; Department of Biology, Dilla University, SNNPR, Ethiopia
| | | | - Manosh K Biswas
- Department of Genetics and Genome Biology, University of Leicester, LE1 7RH, UK
| | - Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tigist Wondimu
- Department of Plant Biology and Biodiversity Management, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Sebsebe Demissew
- Department of Biology, Dilla University, SNNPR, Ethiopia; Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK; Gullele Botanic Garden, P.O. Box 153/1029, Addis Ababa, Ethiopia
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | |
Collapse
|
10
|
Borrell JS, Biswas MK, Goodwin M, Blomme G, Schwarzacher T, Heslop-Harrison JS(P, Wendawek AM, Berhanu A, Kallow S, Janssens S, Molla EL, Davis AP, Woldeyes F, Willis K, Demissew S, Wilkin P. Enset in Ethiopia: a poorly characterized but resilient starch staple. ANNALS OF BOTANY 2019; 123:747-766. [PMID: 30715125 PMCID: PMC6526316 DOI: 10.1093/aob/mcy214] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/16/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Enset (Ensete ventricosum, Musaceae) is an African crop that currently provides the staple food for approx. 20 million Ethiopians. Whilst wild enset grows over much of East and Southern Africa and the genus extends across Asia to China, it has only ever been domesticated in the Ethiopian Highlands. Here, smallholder farmers cultivate hundreds of landraces across diverse climatic and agroecological systems. SCOPE Enset has several important food security traits. It grows over a relatively wide range of conditions, is somewhat drought-tolerant, and can be harvested at any time of the year, over several years. It provides an important dietary starch source, as well as fibres, medicines, animal fodder, roofing and packaging. It stabilizes soils and microclimates and has significant cultural importance. In contrast to the other cultivated species in the family Musaceae (banana), enset has received relatively little research attention. Here, we review and critically evaluate existing research, outline available genomic and germplasm resources, aspects of pathology, and explore avenues for crop development. CONCLUSION Enset is an underexploited starch crop with significant potential in Ethiopia and beyond. Research is lacking in several key areas: empirical studies on the efficacy of current agronomic practices, the genetic diversity of landraces, approaches to systematic breeding, characterization of existing and emerging diseases, adaptability to new ranges and land-use change, the projected impact of climate change, conservation of crop wild relatives, by-products or co-products or non-starch uses, and the enset microbiome. We also highlight the limited availability of enset germplasm in living collections and seedbanks, and the lack of knowledge of reproductive and germination biology needed to underpin future breeding. By reviewing the current state of the art in enset research and identifying gaps and opportunities, we hope to catalyse the development and sustainable exploitation of this neglected starch crop.
Collapse
Affiliation(s)
| | - Manosh K Biswas
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Mark Goodwin
- Department of Genetics and Genome Biology, University of Leicester, UK
| | - Guy Blomme
- Bioversity International, Addis Ababa, Ethiopia
| | | | | | | | - Admas Berhanu
- Department of Biology and Biotechnology, Wolkite University, Hawassa, Ethiopia
| | - Simon Kallow
- Conservation Science Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex, UK
- Division of Crop Biotechnics, Katholieke Universiteit Leuven, Willem de Croylaan, Leuven, Belgium
| | - Steven Janssens
- Laboratory of Plant Systematics, Institute of Botany and Microbiology, Katholieke Universiteit Leuven, Kasteelpark, Arenberg, Leuven, Belgium
| | - Ermias L Molla
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Kathy Willis
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | - Sebsebe Demissew
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Gullele Botanic Garden, Addis Ababa, Ethiopia
| | - Paul Wilkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| |
Collapse
|
11
|
Merga IF, Tripathi L, Hvoslef-Eide AK, Gebre E. Application of Genetic Engineering for Control of Bacterial Wilt Disease of Enset, Ethiopia's Sustainability Crop. FRONTIERS IN PLANT SCIENCE 2019; 10:133. [PMID: 30863414 PMCID: PMC6399475 DOI: 10.3389/fpls.2019.00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/28/2019] [Indexed: 05/05/2023]
Abstract
Enset (Ensete ventricosum (Welw.) Cheesman) is one of the Ethiopia's indigenous sustainability crops supporting the livelihoods of about 20 million people, mainly in the densely populated South and Southwestern parts of the country. Enset serves as a food security crop for humans, animal feed, and source of fiber for the producers. The production of enset has been constrained by plant pests, diseases, and abiotic factors. Among these constraints, bacterial wilt disease has been the most important limiting factor for enset production since its outbreak five decades ago. There is no known bacterial wilt disease resistant genetic material in the enset genetic pool to transfer this trait to susceptible enset varieties through conventional breeding. Moreover, the absence of effective chemicals against the disease has left farmers without means to combat bacterial wilt for decades. Genetic engineering has been the alternative approach to develop disease resistant plant materials in other crops where traditional breeding tools are ineffective. This review discusses enset cultivation and recent developments addressing the control of bacterial wilt disease in enset and related crops like banana to help design effective strategies.
Collapse
Affiliation(s)
- Ibsa Fite Merga
- International Institute of Tropical Agriculture, Nairobi, Kenya
- Norwegian University of Life Sciences, Ås, Norway
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | | | - Endale Gebre
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Yemataw Z, Muzemil S, Ambachew D, Tripathi L, Tesfaye K, Chala A, Farbos A, O’Neill P, Moore K, Grant M, Studholme DJ. Genome sequence data from 17 accessions of Ensete ventricosum, a staple food crop for millions in Ethiopia. Data Brief 2018; 18:285-293. [PMID: 29896517 PMCID: PMC5996239 DOI: 10.1016/j.dib.2018.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 11/17/2022] Open
Abstract
We present raw sequence reads and genome assemblies derived from 17 accessions of the Ethiopian orphan crop plant enset (Ensete ventricosum (Welw.) Cheesman) using the Illumina HiSeq and MiSeq platforms. Also presented is a catalogue of single-nucleotide polymorphisms inferred from the sequence data at an average density of approximately one per kilobase of genomic DNA.
Collapse
Affiliation(s)
- Zerihun Yemataw
- Southern Agricultural Research Institute, Areka Agricultural Research Center, P.O. Box 79, Areka, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, AddisAbaba, Ethiopia
| | - Sadik Muzemil
- Southern Agricultural Research Institute, Areka Agricultural Research Center, P.O. Box 79, Areka, Ethiopia
| | - Daniel Ambachew
- Southern Agricultural Research Institute, Areka Agricultural Research Center, P.O. Box 79, Areka, Ethiopia
| | - Leena Tripathi
- International Institute of Tropical Agriculture, P.O. Box 30709, Nairobi, Kenya
| | - Kassahun Tesfaye
- Addis Ababa University, Institute of Biotechnology, P.O. Box 1176, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Ministry of Science and Technology, P.O. Box 32853, Addis Ababa, Ethiopia
| | - Alemayheu Chala
- Hawassa University, Awassa College of Agriculture, P.O. Box 05, Hawassa, Ethiopia
| | - Audrey Farbos
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Exeter Sequencing Service, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Paul O’Neill
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Exeter Sequencing Service, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Karen Moore
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Exeter Sequencing Service, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Murray Grant
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
13
|
Olango TM, Tesfaye B, Pagnotta MA, Pè ME, Catellani M. Development of SSR markers and genetic diversity analysis in enset (Ensete ventricosum (Welw.) Cheesman), an orphan food security crop from Southern Ethiopia. BMC Genet 2015. [PMID: 26243662 DOI: 10.1186/s12863-12015-10250-12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Enset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people. The crop also has an enormous potential in other regions of Sub-Saharan Africa, where it is known only as a wild plant. Despite its potential, genetic and genomic studies supporting breeding programs and conservation efforts are very limited. Molecular methods would substantially improve current conventional approaches. Here we report the development of the first set of SSR markers from enset, their cross-transferability to Musa spp., and their application in genetic diversity, relationship and structure assessments in wild and cultivated enset germplasm. RESULTS SSR markers specific to E. ventricosum were developed through pyrosequencing of an enriched genomic library. Primer pairs were designed for 217 microsatellites with a repeat size > 20 bp from 900 candidates. Primers were validated in parallel by in silico and in vitro PCR approaches. A total of 67 primer pairs successfully amplified specific loci and 59 showed polymorphism. A subset of 34 polymorphic SSR markers were used to study 70 both wild and cultivated enset accessions. A large number of alleles were detected along with a moderate to high level of genetic diversity. AMOVA revealed that intra-population allelic variations contributed more to genetic diversity than inter-population variations. UPGMA based phylogenetic analysis and Discriminant Analysis of Principal Components show that wild enset is clearly separated from cultivated enset and is more closely related to the out-group Musa spp. No cluster pattern associated with the geographical regions, where this crop is grown, was observed for enset landraces. Our results reaffirm the long tradition of extensive seed-sucker exchange between enset cultivating communities in Southern Ethiopia. CONCLUSION The first set of genomic SSR markers were developed in enset. A large proportion of these markers were polymorphic and some were also transferable to related species of the genus Musa. This study demonstrated the usefulness of the markers in assessing genetic diversity and structure in enset germplasm, and provides potentially useful information for developing conservation and breeding strategies in enset.
Collapse
Affiliation(s)
- Temesgen Magule Olango
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
- Hawassa University, School of Plant and Horticulture Science, P.O.Box 5, Awassa, Ethiopia.
| | - Bizuayehu Tesfaye
- Hawassa University, School of Plant and Horticulture Science, P.O.Box 5, Awassa, Ethiopia.
| | - Mario Augusto Pagnotta
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Marcello Catellani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
- ENEA, UT BIORAD, Laboratory of Biotechnology, Research Center Casaccia, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
14
|
Olango TM, Tesfaye B, Pagnotta MA, Pè ME, Catellani M. Development of SSR markers and genetic diversity analysis in enset (Ensete ventricosum (Welw.) Cheesman), an orphan food security crop from Southern Ethiopia. BMC Genet 2015; 16:98. [PMID: 26243662 PMCID: PMC4524394 DOI: 10.1186/s12863-015-0250-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/09/2015] [Indexed: 11/13/2022] Open
Abstract
Background Enset (Ensete ventricosum (Welw.) Cheesman; Musaceae) is a multipurpose drought-tolerant food security crop with high conservation and improvement concern in Ethiopia, where it supplements the human calorie requirements of around 20 million people. The crop also has an enormous potential in other regions of Sub-Saharan Africa, where it is known only as a wild plant. Despite its potential, genetic and genomic studies supporting breeding programs and conservation efforts are very limited. Molecular methods would substantially improve current conventional approaches. Here we report the development of the first set of SSR markers from enset, their cross-transferability to Musa spp., and their application in genetic diversity, relationship and structure assessments in wild and cultivated enset germplasm. Results SSR markers specific to E. ventricosum were developed through pyrosequencing of an enriched genomic library. Primer pairs were designed for 217 microsatellites with a repeat size > 20 bp from 900 candidates. Primers were validated in parallel by in silico and in vitro PCR approaches. A total of 67 primer pairs successfully amplified specific loci and 59 showed polymorphism. A subset of 34 polymorphic SSR markers were used to study 70 both wild and cultivated enset accessions. A large number of alleles were detected along with a moderate to high level of genetic diversity. AMOVA revealed that intra-population allelic variations contributed more to genetic diversity than inter-population variations. UPGMA based phylogenetic analysis and Discriminant Analysis of Principal Components show that wild enset is clearly separated from cultivated enset and is more closely related to the out-group Musa spp. No cluster pattern associated with the geographical regions, where this crop is grown, was observed for enset landraces. Our results reaffirm the long tradition of extensive seed-sucker exchange between enset cultivating communities in Southern Ethiopia. Conclusion The first set of genomic SSR markers were developed in enset. A large proportion of these markers were polymorphic and some were also transferable to related species of the genus Musa. This study demonstrated the usefulness of the markers in assessing genetic diversity and structure in enset germplasm, and provides potentially useful information for developing conservation and breeding strategies in enset. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0250-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen Magule Olango
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy. .,Hawassa University, School of Plant and Horticulture Science, P.O.Box 5, Awassa, Ethiopia.
| | - Bizuayehu Tesfaye
- Hawassa University, School of Plant and Horticulture Science, P.O.Box 5, Awassa, Ethiopia.
| | - Mario Augusto Pagnotta
- Department of Science and Technologies for Agriculture, Forestry, Nature and Energy (DAFNE), Università degli Studi della Tuscia, Via San Camillo de Lellis, 01100, Viterbo, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Marcello Catellani
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy. .,ENEA, UT BIORAD, Laboratory of Biotechnology, Research Center Casaccia, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
15
|
Abebe E, Mekete T, Seid A, Meressa BH, Wondafrash M, Addis T, Getaneh G, Abate BA. Research on plant-parasitic and entomopathogenic nematodes in Ethiopia: a review of current state and future direction. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Food self-sufficiency is Ethiopia’s national priority goal. Given that pest management seriously impacts agriculture, research on crop diseases is of paramount significance to the national goal. Here we provide a comprehensive account of research on plant-parasitic and entomopathogenic nematodes in Ethiopia. We show that the limited information available indicates that plant-parasitic nematodes impact crop production. There exists a serious gap in knowledge with regard to the effects of plant-parasitic nematodes on almost all major crops. This gap includes surveys with appropriate levels of identification, distribution, and yield loss and damage threshold studies on target crops. The current state of knowledge hinders the nation’s ability to design and implement appropriate control strategies for plant-parasitic nematodes. We propose a strategic assessment of plant-parasitic nematodes of all major crops, the need for systematic manpower training and continued search for entomopathogenic nematodes in the major agro-ecological zones of the nation and further research on those entomopathogenic nematodes already identified.
Collapse
Affiliation(s)
- Eyualem Abebe
- Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Tesfamariam Mekete
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Awol Seid
- Haramaya University, College of Agriculture and Environmental Sciences, School of Plant Sciences, P.O. Box 138, Dire Dawa, Ethiopia
| | - Beira H. Meressa
- Julius Kühn-Institut, Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Toppheideweg 88, 48161 Münster, Germany
| | - Mesfin Wondafrash
- Haramaya University, College of Agriculture and Environmental Sciences, School of Plant Sciences, P.O. Box 138, Dire Dawa, Ethiopia
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| | - Temesgen Addis
- Faculty of Agricultural and Nutritional Sciences, Christian-Albrechts-University Kiel, Hermann-Rodewald-Str. 4, 24118 Kiel, Germany
| | - Gezahegn Getaneh
- College of Veterinary Medicine and Agriculture, Salale Campus, Addis Ababa University P.O. Box 245, Fitche, Ethiopia
| | - Birhan A. Abate
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|