1
|
Opoku VA, Adu MO, Asare PA, Asante J, Hygienus G, Andersen MN. Rapid and low-cost screening for single and combined effects of drought and heat stress on the morpho-physiological traits of African eggplant (Solanum aethiopicum) germplasm. PLoS One 2024; 19:e0295512. [PMID: 38289974 PMCID: PMC10826938 DOI: 10.1371/journal.pone.0295512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/24/2023] [Indexed: 02/01/2024] Open
Abstract
Drought and heat are two stresses that often occur together and may pose significant risks to crops in future climates. However, the combined effects of these two stressors have received less attention than single-stressor investigations. This study used a rapid and straightforward phenotyping method to quantify the variation in 128 African eggplant genotype responses to drought, heat, and the combined effects of heat and drought at the seedling stage. The study found that the morphophysiological traits varied significantly among the 128 eggplants, highlighting variation in response to abiotic stresses. Broad-sense heritability was high (> 0.60) for chlorophyll content, plant biomass and performance index, electrolyte leakage, and total leaf area. Positive and significant relationships existed between biomass and photosynthetic parameters, but a negative association existed between electrolyte leakage and morpho-physiological traits. The plants underwent more significant stress when drought and heat stress were imposed concurrently than under single stresses, with the impact of drought on the plants being more detrimental than heat. There were antagonistic effects on the morphophysiology of the eggplants when heat and drought stress were applied together. Resilient genotypes such as RV100503, RV100501, JAMBA, LOC3, RV100164, RV100169, LOC 3, RV100483, GH5155, RV100430, GH1087, GH1087*, RV100388, RV100387, RV100391 maintained high relative water content, low electrolyte leakage, high Fv/Fm ratio and performance index, and increased biomass production under abiotic stress conditions. The antagonistic interactions between heat and drought observed here may be retained or enhanced during several stress combinations typical of plants' environments and must be factored into efforts to develop climate change-resilient crops. This paper demonstrates improvised climate chambers for high throughput, reliable, rapid, and cost-effective screening for heat and drought and combined stress tolerance in plants.
Collapse
Affiliation(s)
- Vincent A. Opoku
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael O. Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Paul A. Asare
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Justice Asante
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Godswill Hygienus
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mathias N. Andersen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
2
|
Tsivileva OM, Perfileva AI. Mushroom-Derived Novel Selenium Nanocomposites’ Effects on Potato Plant Growth and Tuber Germination. Molecules 2022; 27:molecules27144438. [PMID: 35889308 PMCID: PMC9321743 DOI: 10.3390/molecules27144438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Multicomponent materials, where nanosized selenium (Se) is dispersed in polymer matrices, present as polymer nanocomposites (NCs), namely, selenium polymer nanocomposites (SeNCs). Selenium as an inorganic nanofiller in NCs has been extensively studied for its biological activity. More ecologically safe and beneficial approaches to obtain Se-based products are the current challenge. Biopolymers have attained great attention with perspective multifunctional and high-performance NCs exhibiting low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Composites based on polysaccharides, including beta-glucans from edible and medicinal mushrooms, are bioactive, biocompatible, biodegradable, and have exhibited innovative potential. We synthesized SeNCs on the basis of the extracellular polysaccharides of several medicinal mushrooms. The influence of bio-composites from mushrooms on potato plant growth and tuber germination were studied in two potato cultivars: Lukyanovsky and Lugovskoi. Bio-composites based on Grifola umbellata demonstrated the strongest positive effect on the number of leaves and plant height in both cultivars, without negative effect on biomass of the vegetative part. Treatment of the potato tubers with SeNC from Gr. umbellata also significantly increased germ length. Potato plants exposed to Se-bio-composite from Ganoderma lucidum SIE1303 experienced an increase in the potato vegetative biomass by up to 55% versus the control. We found earlier that this bio-composite was the most efficient against biofilm formation by the potato ring rot causative agent Clavibacter sepedonicus (Cms). Bio-composites based on Pleurotus ostreatus promoted increase in the potato root biomass in the Lugovskoi cultivar by up to 79% versus the control. The phytostimulating ability of mushroom-based Se-containing bio-composites, together with their anti-phytopathogenic activity, testifies in favor of the bifunctional mode of action of these Se-biopreparations. The application of stimulatory green SeNCs for growth enhancement could be used to increase crop yield. Thus, by combining myco-nanotechnology with the intrinsic biological activity of selenium, an unexpectedly efficient tool for possible applications of SeNCs could be identified.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
- Correspondence:
| | - Alla I. Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| |
Collapse
|
3
|
Sabatino L, Consentino BB, Ntatsi G, La Bella S, Baldassano S, Rouphael Y. Stand-Alone or Combinatorial Effects of Grafting and Microbial and Non-Microbial Derived Compounds on Vigour, Yield and Nutritive and Functional Quality of Greenhouse Eggplant. PLANTS (BASEL, SWITZERLAND) 2022; 11:1175. [PMID: 35567179 PMCID: PMC9105124 DOI: 10.3390/plants11091175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The current research investigated the effects of endophytic fungi such as Trichoderma atroviride (Ta) or Ascophyllum nodosum seaweed extract (An) and their combination on growth, yield, nutritive and functional features, and mineral profile of 'Birgah' F1 eggplant either ungrafted, self-grafted or grafted onto the Solanum torvum rootstock. Eggplant exposed to An or An+Ta had a significant increase in root collar diameter 50 days after transplanting (RCD50), total yield (TY), marketable yield (MY), ascorbic acid (AA) content, Mg, Cu, and Zn concentration, and a reduction in glycoalkaloids (GLY) compared with the control. Furthermore, grafted plants had a higher TY, MY, number of marketable fruits (NMF), RCD50, AA, Cu, and Zn and a lower SSC, GLY, and Mg than the ungrafted plants. The combination of grafting and An+Ta significantly improved mean weight of marketable fruits (MF), plant height 50 days after transplanting (PH50), number of leaves 50 days after transplanting (NL50), fruit dry matter (FDM), chlorogenic acid (ClA), proteins, and K and Fe concentration. This combination also produced fruits of high premium quality as evidenced by the higher AA and ClA concentration, the lower GLY concentration, and an overall improved mineral profile.
Collapse
Affiliation(s)
- Leo Sabatino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (B.B.C.); (S.L.B.)
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (B.B.C.); (S.L.B.)
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (B.B.C.); (S.L.B.)
| | - Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
4
|
Li X, Ruan H, Zhou C, Meng X, Chen W. Controlling Citrus Huanglongbing: Green Sustainable Development Route Is the Future. FRONTIERS IN PLANT SCIENCE 2021; 12:760481. [PMID: 34868155 PMCID: PMC8636133 DOI: 10.3389/fpls.2021.760481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 05/12/2023]
Abstract
Huanglongbing (HLB) is the most severe bacterial disease of citrus crops caused by Candidatus Liberibacter spp. It causes a reduction in fruit yield, poor fruit quality, and even plants death. Due to the lack of effective medicine, HLB is also called citrus "AIDS." Currently, it is essential for the prevention and control of HLB to use antibiotics and pesticides while reducing the spread of HLB by cultivating pathogen-free seedlings, removing disease trees, and killing Asian citrus psyllid (ACP). New compounds [e.g., antimicrobial peptides (AMPs) and nanoemulsions] with higher effectiveness and less toxicity were also found and they have made significant achievements. However, further evaluation is required before these new antimicrobial agents can be used commercially. In this review, we mainly introduced the current strategies from the aspects of physical, chemical, and biological and discussed their environmental impacts. We also proposed a green and ecological strategy for controlling HLB basing on the existing methods and previous research results.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huaqin Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Xiangchun Meng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Iodine Biofortification Counters Micronutrient Deficiency and Improve Functional Quality of Open Field Grown Curly Endive. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7030058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human iodine (I) shortage disorders are documented as an imperative world-wide health issue for a great number of people. The World Health Organization (WHO) recommends I consumption through ingestion of seafood and biofortified food such as vegetables. The current work was carried out to appraise the effects of different I concentrations (0, 50, 250, and 500 mg L−1), supplied via foliar spray on curly endive grown in the fall or spring–summer season. Head fresh weight, stem diameter, head height, and soluble solid content (SSC) were negatively correlated to I dosage. The highest head dry matter content was recorded in plants supplied with 250 mg I L−1, both in the fall and spring–summer season, and in those cultivated in the fall season and supplied with 50 mg I L−1. The highest ascorbic acid concentration was recorded in plants cultivated in the spring–summer season and biofortified with the highest I dosage. The highest fructose and glucose concentrations in leaf tissues were obtained in plants cultivated in the spring–summer season and treated with 250 mg I L−1. Plants sprayed with 250 mg I L−1 and cultivated in the fall season had the highest I leaf concentration. Overall, our results evidently suggested that an I application of 250 mg L−1 in both growing seasons effectively enhanced plant quality and functional parameters in curly endive plants.
Collapse
|
6
|
Consentino BB, Virga G, La Placa GG, Sabatino L, Rouphael Y, Ntatsi G, Iapichino G, La Bella S, Mauro RP, D’Anna F, Tuttolomondo T, De Pasquale C. Celery ( Apium graveolens L.) Performances as Subjected to Different Sources of Protein Hydrolysates. PLANTS 2020; 9:plants9121633. [PMID: 33255370 PMCID: PMC7760353 DOI: 10.3390/plants9121633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022]
Abstract
The vegetable production sector is currently fronting several issues mainly connected to the increasing demand of high quality food produced in accordance with sustainable horticultural technologies. The application of biostimulants, particularly protein hydrolysates (PHs), might be favorable to optimize water and mineral uptake and plant utilization and to increase both production performance and quality feature of vegetable crops. The present study was carried out on celery plants grown in a tunnel to appraise the influence of two PHs, a plant-derived PH (P-PH), obtained from soy extract and an animal PH (A-PH), derived from hydrolyzed animal epithelium (waste from bovine tanneries) on yield, yield components (head height, root collar diameter, and number of stalks), mineral composition, nutritional and functional features, as well as the economic profitability of PHs applications. Fresh weight in A-PH and P-PH treated plants was 8.3% and 38.2% higher, respectively than in untreated control plants. However, no significant difference was found between A-PH treated plants and control plants in terms of fresh weight. Head height significantly increased by 5.5% and 16.3% in A-PH and P-PH treated plants, respectively compared with untreated control (p ≤ 0.05). N content was inferior in PHs treated plants than in untreated control. Conversely, K and Mg content was higher in A-PH and P-PH treated plants as compared to the untreated ones. Furthermore, A-PH and P-PH improved ascorbic acid content by 8.2% and 8.7%, respectively compared with the non-treated control (p ≤ 0.001). Our results confirmed, also, that PHs application is an eco-friendly technique to improve total phenolic content in celery plants. In support of this, our findings revealed that animal or plants PH applications increased total phenolics by 36.9% and 20.8%, respectively compared with untreated plants (p ≤ 0.001).
Collapse
Affiliation(s)
- Beppe Benedetto Consentino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| | - Giuseppe Virga
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| | - Gaetano Giuseppe La Placa
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
- Correspondence: (L.S.); (S.L.B.); Tel.: +39-09123862252 (L.S.); +39-09123862231 (S.L.B.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Giovanni Iapichino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| | - Salvatore La Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
- Correspondence: (L.S.); (S.L.B.); Tel.: +39-09123862252 (L.S.); +39-09123862231 (S.L.B.)
| | - Rosario Paolo Mauro
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, via Valdisavoia, 5-95123 Catania, Italy;
| | - Fabio D’Anna
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| | - Teresa Tuttolomondo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| | - Claudio De Pasquale
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (B.B.C.); (G.V.); (G.G.L.P.); (G.I.); (F.D.); (T.T.); (C.D.P.)
| |
Collapse
|
7
|
Poplar Biochar as an Alternative Substrate for Curly Endive Cultivated in a Soilless System. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imminent necessity for eco-friendly and low-cost substitutes to peat is a defiance in the soilless plant cultivation systems. Wood biochar could entirely or partly substitute peat as a plant growing constituent to produce vegetables. Nevertheless, knowledge concerning potential plant performance of leafy green vegetables grown on wood biochar is restricted. The present study assessed the main physicochemical traits of various growing media constituted by decreasing the content of peat and by increasing the percentages of poplar wood biochar. Yield, nutritional and functional properties of curly endive plants cultivated in a protected environment were also tested. Biochar was pyrolyzed from poplar (Populus nigra L.) at 450 or 700 °C for 48 h. Increasing biochar concentration and pyrolysis temperature resulted in higher pH, EC and K content of the growing mediums. Biochar was also effective in increasing particle density and bulk density. Biochar at 70% and pyrolysis temperature of 450 °C significantly increased head fresh weight by 47.4%, head height by 24.9%, stem diameter by 21.5% and number of leaves by 80.8%, respectively compared with the control (100% peat). Head dry matter content, root dry matter content, SSC, ascorbic acid and total phenolic were also significantly affected by this treatment. Furthermore, the addition of biochar and the use of higher pyrolysis temperature decreased N leaves concentration. This represents a particularly important target for leafy green vegetables healthiness.
Collapse
|