1
|
Nomani A, Nosrati H, Faraji N, Charmi J, Javani S. Bismuth-gold nanohybrid based nano photosensitizer to combat antimicrobial resistance. Sci Rep 2024; 14:22598. [PMID: 39349568 PMCID: PMC11442830 DOI: 10.1038/s41598-024-74273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Antimicrobial resistance (AMR) leads to a decrease in the adequacy of antimicrobial agents and an increase in the rate of adverse effects and mortality. The main objective of this project is to investigate the synergistic effect of BiAu@NCLin-T1 and its substructures as an antimicrobial photodynamic therapy (aPDT) agent to combat microbial resistance. In addition, the effect of photothermal therapy (PTT) on some of the designed nanostructures at a temperature of 40 °C was also tested. The antimicrobial test was carried out using the growth curve method against Escherichia coli and Staphylococcus aureus. Computational methods were used to investigate the stability and entropy of oligonucleotide sequence structures. Various analyses were performed to identify the nanostructures, including Ultraviolet-visible (UV-vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS) and fluorescence analysis. The BiAu@NCLin-T1 appeared the significant aPDT impact against the gram-negative E.coli strain at two distinctive oligonucleotide concentrations (1, and 1.5 micromolar (µM)). Based on the results, the outlined nanostructures can act as a photosensitizer (PS), a photothermal treatment (PTT) agent, and an antimicrobial agent to combat resistant bacteria.
Collapse
Affiliation(s)
- Atiyeh Nomani
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Nosrati
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Naser Faraji
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jalil Charmi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - Siamak Javani
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
2
|
Kabir A, Lamichhane B, Habib T, Adams A, El-Sheikh Ali H, Slovis NM, Troedsson MHT, Helmy YA. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond-A Comprehensive Review. Antibiotics (Basel) 2024; 13:713. [PMID: 39200013 PMCID: PMC11350719 DOI: 10.3390/antibiotics13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
The equine industry holds substantial economic importance not only in the USA but worldwide. The occurrence of various infectious bacterial diseases in horses can lead to severe health issues, economic losses, and restrictions on horse movement and trade. Effective management and control of these diseases are therefore crucial for the growth and sustainability of the equine industry. While antibiotics constitute the primary treatment strategy for any bacterial infections in horses, developing resistance to clinically important antibiotics poses significant challenges to equine health and welfare. The adverse effects of antimicrobial overuse and the escalating threat of resistance underscore the critical importance of antimicrobial stewardship within the equine industry. There is limited information on the epidemiology of antimicrobial-resistant bacterial infections in horses. In this comprehensive review, we focus on the history and types of antimicrobials used in horses and provide recommendations for combating drug-resistant bacterial infections in horses. This review also highlights the epidemiology of antimicrobial resistance (AMR) in horses, emphasizing the public health significance and transmission dynamics between horses and other animals within a One Health framework. By fostering responsible practices and innovative control measures, we can better help the equine industry combat the pressing threat of AMR and thus safeguard equine as well as public health.
Collapse
Affiliation(s)
- Ajran Kabir
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Bibek Lamichhane
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Tasmia Habib
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Alexis Adams
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Nathan M. Slovis
- McGee Medical Center, Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA;
| | - Mats H. T. Troedsson
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| | - Yosra A. Helmy
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; (A.K.)
| |
Collapse
|
3
|
Tyrnenopoulou P, Fthenakis GC. Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids. Antibiotics (Basel) 2023; 12:antibiotics12040664. [PMID: 37107026 PMCID: PMC10135018 DOI: 10.3390/antibiotics12040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Antibiotic administration is a standard therapeutic practice for the treatment of reproductive disorders of equids. This might lead to undesirable microbial imbalance and could favour the acquisition of antibiotic resistance. Therefore, it is imperative for clinicians to understand patterns of antibiotic resistance when considering and developing treatment regimes. Continued engagement of clinicians with novel alternative approaches to treat reproductive infections would be essential in order to address this rising threat within the One Health perspective. The objectives of the present review were to present the bacterial infections in the reproductive system of equids (horses, donkeys), to upraise the literature related to the issue of antibiotic resistance of bacteria causing these infections and to discuss the topic from a clinical perspective. Initially, the review summarised the various infections of the reproductive system of equids (genital system of females, genital system of males, mammary glands) and the causal bacteria, providing relevant information about horses and donkeys. Subsequently, the clinical therapeutics of these infections were presented, taking into account the significance of antibiotic resistance of bacteria as a limiting factor in treating the infections. Finally, approaches to circumvent antibiotic resistance in clinical settings were summarized. It was concluded that awareness regarding antibiotic resistance in equine reproductive medicine would increase, as we would recognise the multifaceted problem of resistance. Actions and initiatives within the One Health approach, minimizing the potential dissemination of resistant strains to humans and to the environment, with specific applications in medicine of equids should be appropriately instituted internationally.
Collapse
|
4
|
Wongtawan T, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Fungwithaya P, Saengsawang P, Blackall PJ, Thomrongsuwannakij T. Characterizing the antimicrobial resistance profile of Escherichia coli found in sport animals (fighting cocks, fighting bulls, and sport horses) and soils from their environment. Vet World 2022; 15:2673-2680. [PMID: 36590125 PMCID: PMC9798048 DOI: 10.14202/vetworld.2022.2673-2680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
Background and Aim Antimicrobial resistance (AMR) is a significant threat to global health and development. Inappropriate antimicrobial drug use in animals cause AMR, and most studies focus on livestock because of the widespread use of antimicrobial medicines. There is a lack of studies on sports animals and AMR issues. This study aimed to characterize the AMR profile of E. coli found in sports animals (fighting cocks, fighting bulls, and sport horses) and soils from their environment. Materials and Methods Bacterial isolation and identification were conducted to identify E. coli isolates recovered from fresh feces that were obtained from fighting cocks (n = 32), fighting bulls (n = 57), sport horses (n = 33), and soils from those farms (n = 32) at Nakhon Si Thammarat. Antimicrobial resistance was determined using 15 tested antimicrobial agents - ampicillin (AM), amoxicillin-clavulanic acid, cephalexin (CN), cefalotin (CF), cefoperazone, ceftiofur, cefquinome, gentamicin, neomycin, flumequine (UB), enrofloxacin, marbofloaxacin, polymyxin B, tetracycline (TE), and sulfamethoxazole/trimethoprim (SXT). The virulence genes, AMR genes, and phylogenetic groups were also examined. Five virulence genes, iroN, ompT, hlyF, iss, and iutA, are genes determining the phylogenetic groups, chuA, cjaA, and tspE4C2, were identified. The AMR genes selected for detection were blaTEM and blaSHV for the beta-lactamase group; cml-A for phenicol; dhfrV for trimethoprim; sul1 and sul2 for sulfonamides; tetA, tetB, and tetC for TEs; and qnrA, qnrB, and qnrS for quinolones. Results The E. coli derived from sports animals were resistant at different levels to AM, CF, CN, UB, SXT, and TE. The AMR rate was overall higher in fighting cocks than in other animals, with significantly higher resistance to AM, CF, and TE. The highest AMR was found in fighting cocks, where 62.5% of their isolates were AM resistant. In addition, multidrug resistance was highest in fighting cocks (12.5%). One extended-spectrum beta-lactamase E. coli isolate was found in the soils, but none from animal feces. The phylogenetic analysis showed that most E. coli isolates were in Group B1. The E. coli isolates from fighting cocks had more virulence and AMR genes than other sources. The AMR genes found in 20% or more of the isolates were blaTEM (71.9%), qnrB (25%), qnrS (46.9%), and tetA (56.25%), whereas in the E. coli isolates collected from soils, the only resistance genes found in 20% or more of the isolates were blaTEM (30.8%), and tetA (23.1%). Conclusion Escherichia coli from fighting cock feces had significantly higher resistance to AM, CF, and TE than isolates from other sporting animals. Hence, fighting cocks may be a reservoir of resistant E. coli that can transfer to the environment and other animals and humans in direct contact with the birds or the birds' habitat. Programs for antimicrobial monitoring should also target sports animals and their environment.
Collapse
Affiliation(s)
- Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Excellence Centre for Melioidosis and other microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Ruethai Narinthorn
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Excellence Centre for Melioidosis and other microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Chalutwan Sansamur
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Yotsapat Petcharat
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Punpichaya Fungwithaya
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Excellence Centre for Melioidosis and other microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Patrick J. Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4067, Australia
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat 80160, Thailand,Corresponding author: Thotsapol Thomrongsuwannakij, e-mail: Co-authors: TW: , RN: , NS: , CS: , YP: , PF: , PS: , PJB:
| |
Collapse
|
5
|
Anyanwu MU, Jaja IF, Nwobi OC, Mgbeahuruike AC, Ikpendu CN, Okafor NA, Oguttu JW. Epidemiology and Traits of Mobile Colistin Resistance ( mcr) Gene-Bearing Organisms from Horses. Microorganisms 2022; 10:microorganisms10081499. [PMID: 35893557 PMCID: PMC9394310 DOI: 10.3390/microorganisms10081499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) threaten the efficacy of colistin (COL), a polymyxin antibiotic that is used as a last-line agent for the treatment of deadly infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. COL has been used for more than 60 years for the prophylactic control and treatment of infections in livestock husbandry but not in horses. Polymyxin B is used for the prophylactic control and empirical treatment of infections in horses without conducting sensitivity tests. The lack of sensitivity testing exerts selection pressure for the acquisition of the mcr gene. By horizontal transfer, mcr-1, mcr-5, and mcr-9 have disseminated among horse populations globally and are harbored by Escherichia coli, Klebsiella, Enterobacter, Citrobacter, and Salmonella species. Conjugative plasmids, insertion sequences, and transposons are the backbone of mcr genes in the isolates, which co-express genes conferring multi- to extensive-drug resistance, including genes encoding extended-spectrum β-lactamase, ampicillinase C, fosfomycin, and fluoroquinolone resistance, and virulence genes. The transmission of mcr genes to/among bacterial strains of equine origin is non-clonal. Contact with horses, horse manure, feed/drinking water, farmers, farmers’ clothing/farm equipment, the consumption of contaminated horse meat and its associated products, and the trading of horses, horse meat, and their associated products are routes for the transmission of mcr-gene-bearing bacteria in, to, and from the equine industry.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Microbiology Unit, Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka 400001, Nigeria;
- Correspondence: (M.U.A.); (I.F.J.); Tel.: +27-78-549-2098 (I.F.J.); Fax: +27-86-770-6869 (I.F.J.)
| | - Ishmael Festus Jaja
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa;
- Correspondence: (M.U.A.); (I.F.J.); Tel.: +27-78-549-2098 (I.F.J.); Fax: +27-86-770-6869 (I.F.J.)
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria;
| | | | - Chinaza Nnenna Ikpendu
- Department of Veterinary Microbiology, Michael Okpara University of Agriculture, Umudike 440101, Nigeria;
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa;
| |
Collapse
|
6
|
Third Generation Cephalosporin Resistant Enterobacterales Infections in Hospitalized Horses and Donkeys: A Case-Case-Control Analysis. Antibiotics (Basel) 2021; 10:antibiotics10020155. [PMID: 33557061 PMCID: PMC7913880 DOI: 10.3390/antibiotics10020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
In human medicine, infections caused by third-generation cephalosporin-resistant Enterobacterales (3GCRE) are associated with detrimental outcomes. In veterinary medicine, controlled epidemiological analyses are lacking. A matched case–case–control investigation (1:1:1 ratio) was conducted in a large veterinary hospital (2017–2019). In total, 29 infected horses and donkeys were matched to 29 animals with third-generation cephalosporin-susceptible Enterobacterales (3GCSE) infections, and 29 uninfected controls (overall n = 87). Despite multiple significant associations per bivariable analyses, the only independent predictor for 3GCRE infection was recent exposure to antibiotics (adjusted odds ratio (aOR) = 104, p < 0.001), but this was also an independent predictor for 3GCSE infection (aOR = 22, p < 0.001), though the correlation with 3GCRE was significantly stronger (aOR = 9.3, p = 0.04). In separated multivariable outcome models, 3GCRE infections were independently associated with reduced clinical cure rates (aOR = 6.84, p = 0.003) and with 90 days mortality (aOR = 3.6, p = 0.003). Klebsiella spp. were the most common 3GCRE (36%), and blaCTX-M-1 was the major β-lactamase (79%). Polyclonality and multiple sequence types were evident among all Enterobacterales (e.g., Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae). The study substantiates the significance of 3GCRE infections in equine medicine, and their independent detrimental impact on cure rates and mortality. Multiple Enterobacterales genera, subtypes, clones and mechanisms of resistance are prevalent among horses and donkeys with 3GCRE infections.
Collapse
|