1
|
Shen Z, Zhang T, Twumasi G, Zhang J, Wang J, Xi Y, Wang R, Wang J, Zhang R, Liu H. Genetic analysis of a Kaijiang duck conservation population through genome-wide scan. Br Poult Sci 2024; 65:378-386. [PMID: 38738932 DOI: 10.1080/00071668.2024.2335937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
1. The Kaijiang duck is a native Chinese breed known for its excellent egg laying performance, killing-out percentage (88.57%), and disease resistance. The assessment of population genetic structure is the basis for understanding the genetics of indigenous breeds and for their protection and management.2. In this study, whole-genome sequencing was performed on 60 Kaijiang ducks to identify genetic variations and investigate the population structure. Homozygosity (ROH) analysis was conducted to assess inbreeding levels in the population.3. The study revealed a moderate level of inbreeding, indicated by an average inbreeding coefficient of 0.1043. This may impact the overall genetic diversity.4. Genomic Regions of Interest identified included 168 genomic regions exhibiting high levels of autozygosity. These regions were associated with processes including muscle growth, pigmentation, neuromodulation, and growth and reproduction.5. The significance of these pathways indicated their potential role in shaping the desirable traits of the Kaijiang duck. These findings provide insights into the genetic basis of the Kaijiang duck's desirable traits and can inform future breeding and conservation efforts.
Collapse
Affiliation(s)
- Z Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - T Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - G Twumasi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Y Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - R Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - R Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - H Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wang H, Wang Q, Tan X, Wang J, Zhang J, Zheng M, Zhao G, Wen J. Estimation of genetic variability and identification of regions under selection based on runs of homozygosity in Beijing-You Chickens. Poult Sci 2022; 102:102342. [PMID: 36470032 PMCID: PMC9719870 DOI: 10.1016/j.psj.2022.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The genetic composition of populations is the result of a long-term process of selection and adaptation to specific environments and ecosystems. Runs of homozygosity (ROHs) are homozygous segments of the genome where the 2 haplotypes inherited from the parents are identical. The detection of ROH can be used to describe the genetic variability and quantify the level of inbreeding in an individual. Here, we investigated the occurrence and distribution of ROHs in 40 Beijing-You Chickens from the random breeding population (BJY_C) and 40 Beijing-You Chickens from the intramuscular fat (IMF) selection population (BJY_S). Principal component analysis (PCA) and maximum likelihood (ML) analyses showed that BJY_C was completely separated from the BJY_S. The nucleotide diversity of BJY_C was higher than that of BJY_S, and the decay rate of LD of BJY_C was faster. The ROHs were identified for a total of 7,101 in BJY_C and 9,273 in BJY_S, respectively. The ROH-based inbreeding estimate (FROH) of BJY_C was 0.079, which was significantly lower than that of BJY_S (FROH = 0.114). The results were the same as the estimates of the inbreeding coefficients calculated based on homozygosity (FHOM), the correlation between uniting gametes (FUNI), and the genomic relationship matrix (FGRM). Additionally, the distribution and number of ROH islands in chromosomes of BJY_C and BJY_S were significantly different. The ROH islands of BJY_S that included genes associated with lipid metabolism and fat deposition, such as CIDEA and S1PR1, were absent in BJY_C. However, GPR161 was detected in both populations, which is a candidate gene for the formation of the unique five-finger trait in Beijing-You chickens. Our findings contributed to the understanding of the genetic diversity of random or artificially selected populations, and allowed the accurate monitoring of population inbreeding using genomic information, as well as the detection of genomic regions that affect traits under selection.
Collapse
Affiliation(s)
- Hailong Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Qiao Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Xiaodong Tan
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jie Wang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jin Zhang
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Maiqing Zheng
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Guiping Zhao
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jie Wen
- Chinese Academy of Agricultural Science, State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| |
Collapse
|
3
|
Genetic Variability Trend of Lusitano Horse Breed Reared in Italy. Animals (Basel) 2022; 12:ani12010098. [PMID: 35011204 PMCID: PMC8749805 DOI: 10.3390/ani12010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
The Lusitano Horse (LH) originates from Portugal, but is reared worldwide. Since 1994, the University of Milan has routinely tested the LHs bred in Italy for parentage control. This study aims to assess the genetic variability of the LH reared in Italy using 16 microsatellites markers. Moreover, the genetic variability changes over the years in the total population (n.384) and in unrelated horses (n.47) were evaluated. Horses were grouped according to their date of birth (1975–1990, 1991–2000, 2001–2010, 2010–2019). Standard genetic diversity parameters, including observed (Ho) and expected (He) heterozygosity, Hardy-Weinberg equilibrium (HWE; P-Val), allelic richness, and inbreeding coefficient (Fis) were estimated. In the whole period, the total population showed Ho as high as 0.69, low Fis (0.057), and imbalance for HWE. When considering the unrelated horses, Ho was seen to increase over time (from 0.594 in 1975–1990 to 0.68 in 2010–2019) and frequencies were in HWE, again having low and decreasing values of Fis (from 0.208 in 1975–1990 to 0.019 in 2010–2019). Bottleneck analysis excluded a recent population decline. Principal Coordinate Analysis at the individual level defined two clusters, the major cluster including all the most recent horses. An increasing number of dams (156% more from 2001–2010 to 2011–2019) supports the good variability recorded in the population so far. However, the high number of foals (77.2%) sired by only four stallions in recent years suggests caution in the choice of the sires for the future.
Collapse
|
4
|
Castaneda C, Juras R, Kjöllerström J, Hernandez Aviles C, Teague SR, Love CC, Cothran EG, Varner DD, Raudsepp T. Thoroughbred stallion fertility is significantly associated with FKBP6 genotype but not with inbreeding or the contribution of a leading sire. Anim Genet 2021; 52:813-823. [PMID: 34610162 DOI: 10.1111/age.13142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
This is a follow-up study to validate the previously detected association of the FKBP6 gene with stallion subfertility. Using a select cohort of 150 Thoroughbred stallions with detailed breeding records, we confirm significant association (P < 0.0001) between low per-cycle pregnancy rates (≤50%) and a combined A/A-A/A genotype of SNPs chr13:11 353 372G>A and chr13:11 353 436A>C in FKBP6 exon 5. We also show that stallion subfertility and the combined genotype A/A-A/A are not associated with the level of genetic diversity based on 12 autosomal microsatellite markers, or with pedigree-based inbreeding rate, or the extent of contribution of a leading Thoroughbred sire, Northern Dancer, in a stallion's pedigree. We develop a TaqMan allelic discrimination assay for the two SNPs to facilitate accurate and high-throughput genotyping. We determine allele, genotype and combined genotype frequencies of FKBP6 exon 5 SNPs in a global cohort of 518 Thoroughbreds (76% stallions or geldings and 24% mares) and show that the frequency of the A/A-A/A genotype is 4%. Because there is no similar association between the FKBP6 exon 5 genotype and stallion subfertility in Hanoverians, we suggest that the two SNPs are not causative but rather tagging a breed-specific haplotype with genetic variants unique to Thoroughbreds. Further WGS-based research is needed to identify the molecular causes underlying the observed genotype-phenotype association in Thoroughbred stallions.
Collapse
Affiliation(s)
- C Castaneda
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - R Juras
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - J Kjöllerström
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - C Hernandez Aviles
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - S R Teague
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - C C Love
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - E G Cothran
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - D D Varner
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|