1
|
Młodawska W, Maliński B, Godyń G, Nosal B. Lipid content and G6PDH activity in relation to ooplasm morphology and oocyte maturational competence in the domestic cat model. Reprod Biol 2024; 24:100927. [PMID: 39146721 DOI: 10.1016/j.repbio.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
The aim of the study was to investigate the relationship between ooplasm morphology, lipid content, glucose-6-phosphate dehydrogenase activity (G6PDH) and maturation potential of domestic cat oocytes. Cumulus-oocyte complexes were classified according to ooplasm morphology: evenly dark (dCOC), heterogeneous/mosaic (hCOC), or light/transparent (lCOC), however only dCOCs are thought to be the best-quality, the remaining ones are usually rejected, therefore little is known about their intracellular properties. Lipid droplets (LDs) were visualized and quantified using Oil Red O. G6PDH activity was assessed before in vitro maturation (IVM), using the brilliant cresyl blue (BCB) test. IVM-control oocytes underwent IVM without BCB staining. The dCOCs and hCOCs had different patterns of LD spatial distribution, but similar amounts of lipid, although this tended towards being lower in hCOCs. Low G6PDH activity (BCB+) was observed in 74 %, 60 % and 24 % (P < 0.01) of dCOCs, hCOCs, and lCOCs, respectively. Significantly more BCB+ /oocytes than BCB-/oocytes reached the metaphase II stage in all groups. The maturation rate of BCB+ /hCOCs was higher than that of IVM/hCOC-controls (40 % v.s. 20 %, P < 0.001), and was comparable to that of BCB+ /dCOCs (54 %; P > 0.05). lCOCs were the smallest (P < 0.01), contained fewer (P < 0.01) lipids than dCOCs or hCOCs, and displayed reduced maturational potential. Overall, LD content and distribution, as well as G6PDH activity, in cat oocytes were strongly associated with ooplasm morphology and oocyte maturational competence. Deeper understanding of the intrinsic properties of oocytes with different ooplasm morphology using the domestic cat model, may be particularly important in the context of the conservation of endangered felids.
Collapse
Affiliation(s)
- Wiesława Młodawska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - Bartosz Maliński
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Gabriela Godyń
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Beata Nosal
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
2
|
Li M, Yang C, Duan A, Xiao P, Lu X, Ma X, Xu Y, Zheng W, Feng C, Mo X, Huang C, Huang L, Shang J, Zheng H. CX43 and oxidative stress are the targets of BCB staining to predict the developmental potential of buffalo oocytes. Reprod Domest Anim 2024; 59:e14673. [PMID: 39086079 DOI: 10.1111/rda.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
This study used the brilliant cresyl blue (BCB) staining method to group buffalo oocytes (BCB+ and BCB-) and perform in vitro maturation, in vitro fertilization and embryo culture. At the same time, molecular biology techniques were used to detect gap junction protein expression and oxidative stress-related indicators to explore the molecular mechanism of BCB staining to predict oocyte developmental potential. The techniques of buffalo oocytes to analyse their developmental potential and used immunofluorescence staining to detect the expression level of CX43 protein, DCFH-DA probe staining to detect ROS levels and qPCR to detect the expression levels of the antioxidant-related genes SOD2 and GPX1. Our results showed that the in vitro maturation rate, embryo cleavage rate and blastocyst rate of buffalo oocytes in the BCB+ group were significantly higher than those in the BCB- group and the control group (p < .05). The expression level of CX43 protein in the BCB+ group was higher than that in the BCB- group both before and after maturation (p < .05). The intensity of ROS in the BCB+ group was significantly lower than that in the BCB- group (p < .05), and the expression levels of the antioxidant-related genes SOD2 and GPX1 in the BCB+ group were significantly higher than those in the BCB- group (p < .05). Brilliant cresyl blue staining could effectively predict the developmental potential of buffalo oocytes. The results of BCB staining were positively correlated with the expression of gap junction protein and antioxidant-related genes and negatively correlated with the reactive oxygen species level, suggesting that the mechanism of BCB staining in predicting the developmental potential of buffalo oocytes might be closely related to antioxidant activity.
Collapse
Affiliation(s)
- MengQi Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - ChunYan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - AnQin Duan
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Peng Xiao
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning, China
| | - XingRong Lu
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - XiaoYa Ma
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - YuanYuan Xu
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Wei Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Chao Feng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - Xia Mo
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - ChenQian Huang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - LiQing Huang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - JiangHua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| | - HaiYing Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Rural Affairs, Nanning, China
| |
Collapse
|
3
|
Huijsmans TERG, Hassan HA, Smits K, Van Soom A. Postmortem Collection of Gametes for the Conservation of Endangered Mammals: A Review of the Current State-of-the-Art. Animals (Basel) 2023; 13:ani13081360. [PMID: 37106923 PMCID: PMC10135332 DOI: 10.3390/ani13081360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The collection of gametes from recently deceased domestic and wildlife mammals has been well documented in the literature. Through the utilization of gametes recovered postmortem, scientists have successfully produced embryos in 10 different wildlife species, while in 2 of those, offspring have also been born. Thus, the collection of gametes from recently deceased animals represents a valuable opportunity to increase genetic resource banks, obviating the requirement for invasive procedures. Despite the development of several protocols for gamete collection, the refinement of these techniques and the establishment of species-specific protocols are still required, taking into account both the limitations and the opportunities. In the case of wildlife, the optimization of such protocols is impeded by the scarcity of available animals, many of which have a high genetic value that must be protected rather than utilized for research purposes. Therefore, optimizing protocols for wildlife species by using domestic species as a model is crucial. In this review, we focused on the current advancements in the collection, preservation, and utilization of gametes, postmortem, in selected species belonging to Equidae, Bovidae, and Felidae, both domestic and wildlife.
Collapse
Affiliation(s)
- Tim E R G Huijsmans
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hiba Ali Hassan
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
4
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|