1
|
Li C, Wang F, Ma Y, Wang W, Guo Y. Investigation of the regulatory mechanisms of Guiqi Yimu Powder on dairy cow fatty liver cells using a multi-omics approach. Front Vet Sci 2024; 11:1475564. [PMID: 39444735 PMCID: PMC11497463 DOI: 10.3389/fvets.2024.1475564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Fatty liver disease in dairy cows is a metabolic disorder that significantly affects their health and productivity, imposing a notable economic burden on the global dairy industry. Traditional Chinese medicine (TCM), characterized by its multi-component and multi-target features, has shown unique advantages in the prevention and treatment of various diseases. Guiqi Yimu Powder, a traditional TCM formula, enhances growth, boosts production efficiency, and strengthens immune function in livestock by regulating antioxidant along with anti-inflammatory pathways. However, its specific regulatory mechanisms on fatty liver in dairy cows remain unclear. This study aims to investigate the molecular-level effects and potential regulatory mechanisms of Guiqi Yimu Powder in a Trimethylamine N-oxide (TMAO) induced fatty liver cell model of dairy cows. Methods We employed a comprehensive analysis integrating transcriptomics, proteomics, metabolomics, and network pharmacology. An in vitro dairy cow fatty liver cell model was established using TMAO to induce lipid accumulation. Cells were treated with the optimal TMAO concentration identified through preliminary experiments, and further divided into a lipid accumulation group and Guiqi Yimu Powder treatment groups. The treatment groups received varying concentrations of Guiqi Yimu Powder (10, 20, 30, 40, or 50 g/L). High-throughput omics sequencing technologies were utilized to perform a comprehensive analysis of the treated cells. Bioinformatics methods were applied to explore the regulatory effects, aiming to elucidate the specific impacts of Guiqi Yimu Powder on lipid metabolism, liver function, and related signaling pathways, thereby providing scientific evidence for its potential application in the prevention and treatment of fatty liver in dairy cows. Results Guiqi Yimu Powder treatment significantly affected 1,536 genes, 152 proteins, and 259 metabolites. KEGG enrichment analysis revealed that the significantly altered molecules are involved in multiple pathways related to the pathology of fatty liver, including metabolic pathways, glutathione metabolism, hepatitis B, and AMPK signaling pathway (p < 0.05). Notably, joint analysis highlighted the regulatory mechanisms of Guiqi Yimu Powder on glutathione cycling, with L-5-Oxoproline identified as an important metabolic compound. These findings indicate its impact on oxidative stress, energy metabolism, and liver function, suggesting potential therapeutic applications for fatty liver in dairy cows. Discussion This study elucidated the regulatory mechanisms of Guiqi Yimu Powder on fatty liver cells in dairy cows, providing new scientific evidence for its potential application in the prevention and treatment of fatty liver disease.
Collapse
Affiliation(s)
- Chenlei Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Feifei Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Wenjia Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Yansheng Guo
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
de Oliveira AM, de Faria ALS, Quirino DF, Schultz ÉB, Rennó LN, Rodrigues MT, Veloso CM. Liver Biopsy Technique for Analysis of Hepatic Content during Pregnancy and Early Lactation in Dairy Goats. Vet Sci 2024; 11:384. [PMID: 39195838 PMCID: PMC11359292 DOI: 10.3390/vetsci11080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024] Open
Abstract
Biopsy techniques in dairy goats are currently limited. This study aimed to describe a liver biopsy technique in dairy goats and to evaluate liver triglyceride levels and glycogen content. Sixty-nine dairy goats in the final stage of pregnancy and early lactation period were selected. Fifty goats were selected randomly for hepatic biopsy (HB) according to gestational period and were characterized according to fetus number (single: n = 16, multiple: n = 34), supplementation with propylene glycol (diet: n = 23, diet+PG: n = 27), and milk production levels (high: 3.0 ± 0.4 L/day, n = 15; low: 1.4 ± 0.4 L/day, n = 26). Liver tissue samples were obtained through biopsy on days -30, -20, -15, -10, -5, and 15 days after calving. Hepatic triglyceride and glycogen were quantified. The results were analyzed using the F-test at a 5% significance level and a comparison of means using the Tukey test. The liver biopsies did not influence dry matter intake, body weight, or milk yield. Hepatic glycogen concentration was lower 15 days after calving than it was prior to calving, except on day -20. Goats that generated high levels of milk production had lower triglyceride levels than goats that generated low levels of milk production. The biopsy technique is a safe method for obtaining tissue and evaluating liver content in dairy goats. The milk production level and days relative to parturition influence the hepatic triglyceride and glycogen content in dairy goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Mattos Veloso
- Animal Science Department, Universidade Federal de Viçosa, PH. Rolfs Avenue, Viçosa 36570-900, Brazil; (A.M.d.O.); (A.L.S.d.F.); (D.F.Q.); (É.B.S.); (L.N.R.); (M.T.R.)
| |
Collapse
|
3
|
Zhu C, Zhao Y, Yang F, Zhang Q, Zhao X, Yang Z, Dao X, Laghi L. Microbiome and metabolome analyses of milk and feces from dairy cows with healthy, subclinical, and clinical mastitis. Front Microbiol 2024; 15:1374911. [PMID: 38912351 PMCID: PMC11191547 DOI: 10.3389/fmicb.2024.1374911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Mastitis is commonly recognized as a localized inflammatory udder disease induced by the infiltration of exogenous pathogens. In the present study, our objective was to discern fecal and milk variations in both microbiota composition and metabolite profiles among three distinct groups of cows: healthy cows, cows with subclinical mastitis and cows with clinical mastitis. The fecal microbial community of cows with clinical mastitis was significantly less rich and diverse than the one harbored by healthy cows. In parallel, mastitis caused a strong disturbance in milk microbiota. Metabolomic profiles showed that eleven and twenty-eight molecules exhibited significant differences among the three groups in feces and milk, respectively. Similarly, to microbiota profile, milk metabolome was affected by mastitis more extensively than fecal metabolome, with particular reference to amino acids and sugars. Pathway analysis revealed that amino acids metabolism and energy metabolism could be considered as the main pathways altered by mastitis. These findings underscore the notable distinctions of fecal and milk samples among groups, from microbiome and metabolomic points of view. This observation stands to enhance our comprehension of mastitis in dairy cows.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yuxuan Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xiaofang Dao
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
4
|
Liu X, Yao S, Liu Y, Han H, Wang W, Yi Q, Yan L, Ji P, Zhang L, Liu G. Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows. Animals (Basel) 2024; 14:1278. [PMID: 38731282 PMCID: PMC11083187 DOI: 10.3390/ani14091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The negative energy balance occurring in the periparturient period of cows will impede their health and postpartum performance. To target this issue, L-tryptophan was supplied to the prepartum cows. The results showed that L-tryptophan supplementation significantly increased the serum melatonin level and was accompanied with increases in SOD activity, IL-10 and colostrum IgA levels as well as decreases in MDA and IL-6 levels compared to the control cows. The incidence of postpartum diseases was significantly lower and the pregnancy rate was significantly higher in cows fed L-tryptophan than in the control group. A striking observation was that prepartum L-tryptophan supplementation not only improved the milk production but also the quality compared to the control cows. In general, supplementation with L-tryptophan in the prepartum period can improve the postpartum reproduction and lactation performance of cows to some extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.)
| |
Collapse
|
5
|
Mekuriaw Y. Negative energy balance and its implication on productive and reproductive performance of early lactating dairy cows: review paper. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2023.2176859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yeshambel Mekuriaw
- Department of Animal Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
6
|
Yuan C, Tan D, Meng Z, Jiang M, Lin M, Zhao G, Zhan K. The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows. Animals (Basel) 2023; 13:2721. [PMID: 37684984 PMCID: PMC10486917 DOI: 10.3390/ani13172721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Excessive lipid mobilization will snatch cell membrane lipids in postpartum dairy cows, which may impair the function of immune cells, including peripheral mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). Acetate, as a precursor and the energy source of milk fat synthesis, plays a key role in lipid synthesis and the energy supply of dairy cows. However, there is little information about the effect of sodium acetate (NaAc) on the immune function of PBMC and PMN in postpartum dairy cows. Therefore, this study aimed to evaluate the effects of NaAc on the immune functions of PBMCs and PMNs in postpartum dairy cows. In this experiment, twenty-four postpartum multiparous Holstein cows were randomly selected and divided into a NaAc treatment group and a control group. Our results demonstrated that the dietary addition of NaAc increased (p < 0.05) the number of monocytes and the monocyte ratio, suggesting that these postpartum cows fed with NaAc may have better immunity. These expressions of genes (LAP, XBP1, and TAP) involved in the antimicrobial activity in PBMCs were elevated (p < 0.05), suggesting that postpartum dairy cows supplemented with NaAc had the ability of antimicrobial activity. In addition, the mRNA expression of the monocarboxylate transporters MCT1 and MCT4 in PBMCs was increased (p < 0.05) in diets supplemented with NaAc in comparison to the control. Notably, the expression of the XBP1 gene related to antimicrobial activity in PMN was upregulated with the addition of NaAc. The mRNA expression of genes (TLN1, ITGB2, and SELL) involved in adhesion was profoundly increased (p < 0.05) in the NaAc groups. In conclusion, our study provided a novel resolution strategy in which the use of NaAc can contribute to immunity in postpartum dairy cows by enhancing the ability of antimicrobial and adhesion in PBMCs and PMNs.
Collapse
Affiliation(s)
- Cong Yuan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Dejin Tan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Zitong Meng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Tommasoni C, Fiore E, Lisuzzo A, Gianesella M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals (Basel) 2023; 13:2538. [PMID: 37570346 PMCID: PMC10417731 DOI: 10.3390/ani13152538] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mastitis is one of the most important diseases in dairy cattle farms, and it can affect the health status of the udder and the quantity and quality of milk yielded. The correct management of mastitis is based both on preventive and treatment action. With the increasing concern for antimicrobial resistance, it is strongly recommended to treat only the mammary quarters presenting intramammary infection. For this reason, a timely and accurate diagnosis is fundamental. The possibility to detect and characterize mastitis directly on farm would be very useful to choose the correct management protocol. Some on-field diagnostic tools are already routinely applied to detect mastitis, such as the California Mastitis Test and on-farm culture. Other instruments are emerging to perform a timely diagnosis and to characterize mastitis, such as Infra-Red Thermography, mammary ultrasound evaluation and blood gas analysis, even if their application still needs to be improved. The main purpose of this article is to present an overview of the methods currently used to control, detect, and characterize mastitis in dairy cows, in order to perform a timely diagnosis and to choose the most appropriate management protocol, with a specific focus on on-farm diagnostic tools.
Collapse
Affiliation(s)
- Chiara Tommasoni
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (E.F.); (A.L.); (M.G.)
| | | | | | | |
Collapse
|
8
|
Zhang C, Li C, Shao Q, Meng S, Wang X, Kong T, Li Y. Antioxidant monoammonium glycyrrhizinate alleviates damage from oxidative stress in perinatal cows. J Anim Physiol Anim Nutr (Berl) 2023; 107:475-484. [PMID: 35989475 DOI: 10.1111/jpn.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/17/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
This study was conducted to evaluate the antioxidant capability of dietary supplementation with monoammonium glycyrrhizinate (MAG) in perinatal cows. Glycyrrhizic acid has been shown to have strong antioxidant activity and we hypothesised that the aglycone of glycyrrhizin and MAG, could reduce damage from oxidative stress in perinatal cows by enhancing antioxidant capacity. Blood and milk samples were collected from three groups of healthy perinatal cows that were similar in body weight, parity, milk yield in the last milk cycle, etc., receiving dietary MAG supplementation ([Day 0 = parturition]: 0 g/day, [n = 13)] 3 g/day [n = 13] or 6 g/day [n = 11]) from -28 to 56 day (0 day = parturition). Compared with 0 g/day controls (CON), milk fat was significantly decreased in cows fed with MAG, and 3 g/day had the greatest effect. A diet containing 3 g/day MAG decreased the serum alanine aminotransferase (ALT) level compared with CON at -7 day post-partum. ALT was also lower at 5 day post-partum in cows fed with 3 g/day MAG compared to 6 g/day. The administration of 3 g/day and 6 g/day MAG decreased serum aspartate transaminase (AST) at 3 day post-partum. Supplementation of MAG in cows increased total antioxidant capacity (T-AOC) in serum, and cows given 3 g MAG per day had higher T-AOC than controls on post-partum 7 day. At the end of the experiment, we isolated and cultured primary hepatocytes to determine the effect of MAG on oxidative stress caused by incubation with the sodium oleate (SO). SO increased lipid synthesis, but pre-treatment with MAG prevented the fatty buildup. SO treatment increased AST and ALT levels and malondialdehyde concentration, but decreased T-AOC and superoxide dismutase (SOD). Incubation with MAG increased antioxidant capacity and inhibited oxidant damage in bovine hepatocytes. SO stimulated expression of the antioxidant genes, NAD(P)H quinone dehydrogenase 1 (NQO1) and SOD1, in the nuclear factor erythroid 2-related factor 2 (NRF2) pathway, and catalase 1 (CAT1); this increase was accentuated by MAG pre-treatment. The results suggest that MAG can alleviate the damage caused by oxidative stress in perinatal cows by enhancing antioxidant activity.
Collapse
Affiliation(s)
- Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Chenxu Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Tao Kong
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Heifei, China
| |
Collapse
|
9
|
Effects of Tea Tree Oil on Production Performance, Serum Parameter Indices, and Immunity in Postpartum Dairy Cows. Animals (Basel) 2023; 13:ani13040682. [PMID: 36830470 PMCID: PMC9952486 DOI: 10.3390/ani13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Tea tree oil (TTO) plays an important role in regulating lipid metabolism and has anti-inflammatory properties. In postpartum dairy cows, dry matter intake (DMI) is dramatically decreased, resulting in lipid metabolism disorder and the systemic pro-inflammatory response. However, the effects of TTO on glucolipid metabolism and immunity in postpartum dairy cows remain uninvestigated. Therefore, this study aimed to evaluate the effects of TTO on production performance, serum biochemical indicators, and immunity in postpartum dairy cows. Our results demonstrate that DMI tended to increase (p = 0.07) in the total mixed ration (TMR) diets supplemented with 0.01% TTO/dry matter (DM) basis relative to that in the control group. The 4% fat-corrected milk (FCM) content in the 0.01% and 0.02% TTO groups showed an increase (p = 0.09) compared with that in the control. Remarkably, the levels of globulin (GLO) and immunoglobulin G (IgG) were elevated (p < 0.05) in the TMR diet supplemented with 0.02% TTO compared to those in the control group. The TTO caused no profound changes in cholesterol (CHO), triglyceride (TG), high-density lipoprotein (HDL), or low-density lipoprotein (LDL). Notably, 0.02% TTO increased (p < 0.05) the serum glucose concentration relative to that in the control group. In conclusion, our results demonstrate that TTO could improve glucolipid metabolism and enhance immunity in postpartum dairy cows. It may be a novel resolution strategy for body condition recovery and the improvement of milk performance.
Collapse
|
10
|
Yakan A, Özkan H, Kaya U, Keçeli HH, Dalkiran S, Karaaslan I, Ünal N, Akçay A, Arslan K, Akyüz B, Güngör G, Çamdeviren B, Küçükoflaz M, Sariözkan S, Özbeyaz C. Effects of propylene glycol used at different doses in Akkaraman lambs rations on metabolism-related parameters and liver gene and protein expression during different feeding periods. Anim Sci J 2023; 94:e13886. [PMID: 37963598 DOI: 10.1111/asj.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
This study aimed to investigate the metabolic effects of propylene glycol (PG) over 60, 90, and 120 days in lambs. Seventy-two weaned male lambs were allocated into three groups: control (Con), PG1.5 (1.5 mL/kg live weight0.75 ), and PG3 (3 mL/kg live weight0.75 ). Blood samples were collected at the beginning and slaughter days. Biochemical parameters (glucose, triglycerides, ALT, AST, LDH, BUN, and insulin) and gene and protein levels of peroxisome proliferator activated receptor gamma (PPARγ), diacylglycerol o-acyltransferase 1 (DGAT1), carbohydrate responsive element binding protein (ChREBP), and sterol regulatory element binding transcription factor 1c (SREBP-1c) in the liver were determined. Glucose in PG1.5 was increased on Day 60, while significant differences were observed in biochemical parameters except for insulin on the 60, 90, and 120 days. Biochemical parameters such as ALT, AST, LDH, and BUN increased over time, while triglycerides decreased. DGAT1 gene and protein levels were lower, while SREBP-1c and PPARγ were higher in PG groups on Day 60. While SREBP-1c was lower in PG1.5, ChREBP was higher in PG3 on Day 90. PPARγ, DGAT1, and ChREBP were upregulated in PG3 on Day 120. Positive correlations were found between proteins. The long-term use of PG in lambs did not have detrimental effects on metabolism. The study provides valuable insights into the molecular mechanisms underlying the metabolic effects of PG in lambs, shedding light on its potential applications in lamb production.
Collapse
Affiliation(s)
- Akın Yakan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Hüseyin Özkan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Ufuk Kaya
- Faculty of Veterinary Medicine, Department of Biostatistics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Hasan Hüseyin Keçeli
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Sevda Dalkiran
- Institute of Health Sciences, Department of Molecular Biochemistry and Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Irem Karaaslan
- Technology and Research & Development Center (MARGEM), Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Necmettin Ünal
- Faculty of Veterinary Medicine, Department of Animal Science, Ankara University, Ankara, Turkiye
| | - Aytaç Akçay
- Faculty of Veterinary Medicine, Department of Biostatistics, Ankara University, Ankara, Turkiye
| | - Korhan Arslan
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Bilal Akyüz
- Faculty of Veterinary Medicine, Department of Genetics, Erciyes University, Kayseri, Turkiye
| | - Güven Güngör
- Faculty of Veterinary Medicine, Department of Biostatistics, Erciyes University, Kayseri, Turkiye
| | - Baran Çamdeviren
- Institute of Health Sciences, Department of Molecular Biochemistry and Genetics, Hatay Mustafa Kemal University, Antakya, Hatay, Turkiye
| | - Mehmet Küçükoflaz
- Faculty of Veterinary Medicine, Department of Animal Health Economics and Management, Kafkas University, Kars, Turkiye
| | - Savaş Sariözkan
- Faculty of Veterinary Medicine, Department of Animal Health Economics and Management, Erciyes University, Kayseri, Turkiye
| | - Ceyhan Özbeyaz
- Faculty of Veterinary Medicine, Department of Animal Science, Ankara University, Ankara, Turkiye
| |
Collapse
|
11
|
Changes in plasma fatty acids profile in hyperketonemic ewes during early lactation: a preliminary study. Sci Rep 2022; 12:17017. [PMID: 36220846 PMCID: PMC9553884 DOI: 10.1038/s41598-022-21088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/22/2022] [Indexed: 12/29/2022] Open
Abstract
The transition from late pregnancy to early lactation is characterized by marked changes in energy balance of dairy ruminants. The mobilization of adipose tissue led to an increase in plasma non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). The aim of this study was to analyze the total plasma fatty acids of healthy and hyperketonemic dairy ewes in early lactation through gas chromatography (GC) to evaluate metabolic alterations. An observational study was used with a cross-sectional experimental design. Forty-six Sarda dairy ewes were enrolled in the immediate post-partum (7 ± 3 days in milk) and divided into two groups according to serum BHB concentration: non-hyperketonemic group (n = 28; BHB < 0.86 mmol/L) and hyperketonemic group (n = 18; BHB ≥ 0.86 mmol/L). A two-way ANOVA included the effect of group and parity was used to evaluate differences in fatty acids (FA) concentrations. A total of 34 plasma FA was assessed using GC. 12 out of 34 FA showed a significant different between groups and 3 out of 34 were tended to significance. Only NEFA concentration and stearic acid were influenced by parity. The results may suggest possible links with lipid metabolism, inflammatory and immune responses in hyperketonemic group. In conclusion, GC represents a useful tool in the study of hyperketonemia and primiparous dairy ewes might show a greater risk to develop this condition.
Collapse
|
12
|
Fu Y, He Y, Xiang K, Zhao C, He Z, Qiu M, Hu X, Zhang N. The Role of Rumen Microbiota and Its Metabolites in Subacute Ruminal Acidosis (SARA)-Induced Inflammatory Diseases of Ruminants. Microorganisms 2022; 10:1495. [PMID: 35893553 PMCID: PMC9332062 DOI: 10.3390/microorganisms10081495] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Subacute ruminal acidosis (SARA) is a common metabolic disease in ruminants. In the early stage of SARA, ruminants do not exhibit obvious clinical symptoms. However, SARA often leads to local inflammatory diseases such as laminitis, mastitis, endometritis and hepatitis. The mechanism by which SARA leads to inflammatory diseases is largely unknown. The gut microbiota is the totality of bacteria, viruses and fungi inhabiting the gastrointestinal tract. Studies have found that the gut microbiota is not only crucial to gastrointestinal health but also involved in a variety of disease processes, including metabolic diseases, autoimmune diseases, tumors and inflammatory diseases. Studies have shown that intestinal bacteria and their metabolites can migrate to extraintestinal distal organs, such as the lung, liver and brain, through endogenous pathways, leading to related diseases. Combined with the literature, we believe that the dysbiosis of the rumen microbiota, the destruction of the rumen barrier and the dysbiosis of liver function in the pathogenesis of SARA lead to the entry of rumen bacteria and/or metabolites into the body through blood or lymphatic circulation and place the body in the "chronic low-grade" inflammatory state. Meanwhile, rumen bacteria and/or their metabolites can also migrate to the mammary gland, uterus and other organs, leading to the occurrence of related inflammatory diseases. The aim of this review is to describe the mechanism by which SARA causes inflammatory diseases to obtain a more comprehensive and profound understanding of SARA and its related inflammatory diseases. Meanwhile, it is also of great significance for the joint prevention and control of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (Y.F.); (Y.H.); (K.X.); (C.Z.); (Z.H.); (M.Q.)
| |
Collapse
|
13
|
Wang H, Chen R, Zhang F, Yu Z, Wang Y, Tang Z, Yang L, Tang X, Xiong B. Superhydrophobic Paper-Based Microfluidic Field-Effect Transistor Biosensor Functionalized with Semiconducting Single-Walled Carbon Nanotube and DNAzyme for Hypocalcemia Diagnosis. Int J Mol Sci 2022; 23:ijms23147799. [PMID: 35887147 PMCID: PMC9318675 DOI: 10.3390/ijms23147799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Hypocalcemia is caused by a sharp decline in blood calcium concentration after dairy cow calving, which can lead to various diseases or even death. It is necessary to develop an inexpensive, easy-to-operate, reliable sensor to diagnose hypocalcemia. The cellulose-paper-based microfluidic field-effect biosensor is promising for point-of-care, but it has poor mechanical strength and a short service life after exposure to an aqueous solution. Octadecyltrichlorosilane (OTS), as a popular organosilane derivative, can improve the hydrophobicity of cellulose paper to overcome the shortage of cellulose paper. In this work, OTS was used to produce the superhydrophobic cellulose paper that enhances the mechanical strength and short service life of MFB, and a microfluidic field-effect biosensor (MFB) with semiconducting single-walled carbon nanotubes (SWNTs) and DNAzyme was then developed for the Ca2+ determination. Pyrene carboxylic acid (PCA) attached to SWNTs through a non-covalent π-π stacking interaction provided a carboxyl group that can bond with an amino group of DNAzyme. Two DNAzymes with different sensitivities were designed by changing the sequence length and cleavage site, which were functionalized with SPFET/SWNTs-PCA to form Dual-MFB, decreasing the interference of impurities in cow blood. After optimizing the detecting parameters, Dual-MFB could determine the Ca2+ concentration in the range of 25 μM to 5 mM, with a detection limit of 10.7 μM. The proposed Dual-MFB was applied to measure Ca2+ concentration in cow blood, which provided a new method to diagnose hypocalcemia after dairy cow calving.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhixue Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Zhonglin Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
- Correspondence: (X.T.); (B.X.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (R.C.); (F.Z.); (Z.Y.); (Y.W.); (Z.T.); (L.Y.)
- Correspondence: (X.T.); (B.X.)
| |
Collapse
|
14
|
Cascone G, Licitra F, Stamilla A, Amore S, Dipasquale M, Salonia R, Antoci F, Zecconi A. Subclinical Ketosis in Dairy Herds: Impact of Early Diagnosis and Treatment. Front Vet Sci 2022; 9:895468. [PMID: 35832327 PMCID: PMC9272741 DOI: 10.3389/fvets.2022.895468] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Clinical and subclinical ketosis (SCK) in dairy cows occurs during the lactation period frequently in many herds, causing a reduction in milk yield and alterations in milk quality with significant economic losses for farmers. SCK is defined as a preclinical stage of ketosis characterized by an elevated ketone body level without clinical signs. Often many cows develop an elevated ketone body level during the first weeks of lactation even though it never goes up to a critical point causing clinical signs. This study aimed to evaluate the prevalence of SCK in Sicily and assess the effect of a treatment with propylene glycol (PG) to control the SCK, thus, reducing the negative effect on milk quality yield. This cross-sectional study was carried out on 22 farms located south-east of Sicily and 1,588 cows in lactation. A total of 3,989 individual milk samples were collected from calving to 80 subsequently days to check the β-hydroxybutyrate (BHB) values in order to establish the SCK status by the Fourier Transform Infrared Spectroscopy. Moreover, the contents of fat, protein, lactose, casein, urea, somatic cell count and acetone were evaluated to identify a correlation between SCK and milk quality. A total of 1,100 cows showed BHB values higher than 0.10 mmol/L. These cows were considered SCK positive, were separated from the rest of the herd, and treated with PG (400 g/head per day), all SCK cows were treated with PG and cows without SCK were not treated. The results showed a prevalence of 41.5% of SCK-positive cows during the first 9 days of lactation. The comparison among the cure rate of treated cows shows that the treatment was most effective in the first 7 days of lactation (76.5% of treated cows) than in the following days. PG positively influenced the milk quality parameters, except for the fat proportion. Moreover, the animals treated with PG showed also an increase in milk yield, supporting the economical sustainability of treatment.
Collapse
Affiliation(s)
| | | | - Alessandro Stamilla
- Department of Agricultural Food and Environmental Science (Di3A), University of Catania, Catania, Italy
- *Correspondence: Alessandro Stamilla
| | | | | | - Rosario Salonia
- Istituto Zooprofilattico Sperimentale of Sicily, Palermo, Italy
| | | | - Alfonso Zecconi
- Department of Biomedical, Surgical and Dental Science, One Health Unit, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Xiang K, Li S, Tuniyazi M, Mu R, Wang Y, Zhang N, Hu X, Fu Y. Changes in the rumen microbiota community in ketosis cows during propylene glycol treatment. Food Funct 2022; 13:7144-7156. [PMID: 35699056 DOI: 10.1039/d1fo03800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ketosis, a common metabolic disorder in dairy cattle, occurs during early lactation and leads to higher concentrations of non-esterified fatty acids (NEFAs) and β-hydroxybutyrate (BHBA), and is generally believed to be caused by excessive negative energy balance (NEB). Propylene glycol (PG), a gluconeogenic precursor, has been proved to promote gluconeogenesis and alleviate NEB. Oral administration of PG is widely considered one of the most effective therapeutic options for treating ketosis. Thus, in this study, we assessed the effects of PG on rumen microbiota via 16S rDNA analysis. The results show that one dose (500 mL) of PG treatment could rapidly reduce the blood BHBA level in ketosis cows by increasing the level and proportion of propionate in the rumen. Meanwhile, PG also had certain effects on the rumen bacterial community. Compared with before treatment, the relative abundances of Prevotella, Succinivibrionaceae_UCG-001 and Prevotellaceae_UCG-001 increased significantly, while those of Christensenellaceae_R-7_group, Butyrivibrio and Saccharofermentans significantly decreased. LEfSe analysis revealed that after PG treatment, only Rikenellaceae_RC9_gut_group was enriched in the rumen fluid at the genus level. In conclusion, the present study indicates that ketosis is accompanied by alterations in the rumen microbiota community. PG treatment changes the composition of rumen microbiota to a healthier state and contributes to rapid recovery from ketosis. These results support the usage of PG for treating such metabolic diseases that challenge high-yield cows due to their minimized cost and maximized safety without any adverse events.
Collapse
Affiliation(s)
- Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China. .,Department of Veterinary Medicine, College of Agriculture, Eastern Liaoning University, Dandong, Liaoning Province 118000, People's Republic of China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | - Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | | | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, People's Republic of China.
| |
Collapse
|
16
|
Mohsin MA, Yu H, He R, Wang P, Gan L, Du Y, Huang Y, Abro MB, Sohaib S, Pierzchala M, Sobiech P, Miętkiewska K, Pareek CS, He BX. Differentiation of Subclinical Ketosis and Liver Function Test Indices in Adipose Tissues Associated With Hyperketonemia in Postpartum Dairy Cattle. Front Vet Sci 2022; 8:796494. [PMID: 35187139 PMCID: PMC8850981 DOI: 10.3389/fvets.2021.796494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Past studies suggested that during early lactation and the transition period, higher plasma growth hormone (GH) levels in subclinical ketosis (SCK) might involve the initiation of body adipose tissues mobilization, resulting in metabolic disorders in ruminants particularly hyperketonemia. The upregulated GH mRNA expression in adipose tissue may take part in the adipolysis process in SCK-affected cows that paves a way for study further. This study aimed to characterize the plasma levels of GH, β-hydroxybutyrate acid (BHBA) and non-esterified fatty acid (NEFA) and glucose (GLu) in ketotic cows and healthy control (CON) cows; to measure the liver function test (LFT) indices in ketotic and healthy CON cows, and finally the quantitative real-time PCR (qRT-PCR) assay of candidate genes expressed in adipose tissues of ketotic and healthy CON cows during 0 to 7 week postpartum. Three experiments were conducted. Experiment-1 involved 21 Holstein cows weighing 500–600 kg with 2–5 parities. Results showed that GH, BHBA, and NEFA levels in ketotic cows were significantly higher and the GLu level significantly lower. Pearson's correlation analysis revealed a significant positive correlation of GH with BHBA, NEFA, and GLu in ketotic and healthy CON cows. In experiment-2, dynamic monitoring of LFT indices namely, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), total protein (TP), albumin (ALB), globulin (GLOB) and albumin/globulin (A/G) were examined. The TBIL, DBIL, and GGT indices were significantly higher in ketotic cows and TP was significantly lower. In experiment-3, mRNA expression levels of GHR and peroxisome-proliferator-activated receptor alpha (PPARα) genes in adipose tissue were significantly upregulated in ketotic cows. However, the mRNA expression of insulin-like growth factor-I (IGF-1), insulin-like growth factor-I receptor (IGF-1R), and sterol regulatory element-binding protein-1c (SREBP-1c) genes in adipose tissue were downregulated in ketotic cows. Our study concluded that during postpartum, higher plasma GH levels in SCK cows might involve the initiation of body adipose tissue mobilization, resulting in hyperketonemia.
Collapse
Affiliation(s)
- Muhammad Ali Mohsin
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiru Yu
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Animal Disease Prevention and Control Center, Shanghai, China
| | - Rongze He
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peng Wang
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Linli Gan
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yulan Du
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Muhammad Bakhsh Abro
- Department of Veterinary Medicine, Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal, Pakistan
| | - Sarmad Sohaib
- Department of Veterinary Medicine, Faculty of Veterinary and Animal Science, Lasbela University of Agriculture, Water, and Marine Sciences, Uthal, Pakistan
| | - Mariusz Pierzchala
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Przemysław Sobiech
- Internal Disease Unit, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Klaudia Miętkiewska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Chandra S. Pareek
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | - Bao Xiang He
- Laboratory of Clinical Veterinary Medicine, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Bao Xiang He
| |
Collapse
|
17
|
Ha S, Kang S, Han M, Lee J, Chung H, Kim D, Park J. Therapeutic Effects of Levocarnitine or Vitamin B Complex and E With Selenium on Glycerin-Treated Holstein Friesian Cows With Clinical Ketosis. Front Vet Sci 2021; 8:773902. [PMID: 34869746 PMCID: PMC8633306 DOI: 10.3389/fvets.2021.773902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, ketosis has no fully satisfactory resolution in dairy cows. Here, we investigated the effect of levocarnitine or vitamin B complex and E with selenium on clinically ketotic cows (β-hydroxybutyrate ≥ 3.0 mmol/L and decreased milk yield), fed glycerin. In total, 18 cases of Holstein cows with clinical ketosis during the postpartum transition period were randomly assigned to three treatments (6 cases per group): (1) levocarnitine (C+G), (2) vitamin B complex and E with selenium (VBES+G), and (3) levocarnitine and vitamin B complex and E with selenium (C+VBES+G). All groups were administered glycerin. Treatments were administered daily for 4 days. Blood sampling was performed on the onset day of ketosis (day 0), day 4, and day 6. β-Hydroxybutyrate (BHBA), milk yield (MY), and serum biochemical values were measured. Half of the animals in C+G failed to overcome clinical ketosis. VBES+G treatment ameliorated BHBA (p < 0.05), MY, and glucose on day 4. However, ketosis was exacerbated following the discontinuation of the treatment. C+VBES+G treatment improved BHBA, glucose (p < 0.05), and MY and reduced ketotic cases on days 4 and 6 with greater improvements compared to the others. In conclusion, combined treatment with levocarnitine, vitamin B complex and E with selenium, and glycerin may have the therapeutic effect on clinical ketosis.
Collapse
Affiliation(s)
- Seungmin Ha
- National Institute of Animal Science, RDA, Cheonan-si, South Korea
| | - Seogjin Kang
- National Institute of Animal Science, RDA, Cheonan-si, South Korea
| | - Manhye Han
- National Institute of Animal Science, RDA, Cheonan-si, South Korea
| | - Jihwan Lee
- National Institute of Animal Science, RDA, Cheonan-si, South Korea
| | - Hakjae Chung
- National Institute of Animal Science, RDA, Cheonan-si, South Korea
| | - Donghyeon Kim
- National Institute of Animal Science, RDA, Cheonan-si, South Korea
| | - Jinho Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si, South Korea
| |
Collapse
|
18
|
Daneshvar D, Ghasemi E, Hashemzadeh F, Kowsar R, Khorvash M. Feeding diets varying in starch concentration supplemented with palmitic acid or stearic acid: Effects on performance, milk fatty acid profile, and metabolic parameters of postpartum dairy cows. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Regulation of Nutritional Metabolism in Transition Dairy Goats: Energy Balance, Liver Activity, and Insulin Resistance in Response to Berberine Supplementation. Animals (Basel) 2021; 11:ani11082236. [PMID: 34438693 PMCID: PMC8388389 DOI: 10.3390/ani11082236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The objectives of this study were to evaluate the alleviating effects of the isoquinoline alkaloid berberine (BBR) on the energy balance (EB), glucose and insulin metabolism, and liver functionality in transition dairy goats, as reflected by blood metabolites and enzymes. Twenty-four primiparous Saanen goats were randomly allocated to four groups. Goats in each group received, ad libitum, the same basal diet during the pre- and post-partum periods of evaluation. Goats received daily0, 1, 2, or 4 g BBR (coded as CON, BBR1, BBR2, and BBR4, respectively). Dry matter intake (DMI) and milk yield were recorded daily. Blood samples were collected on days -21, -14, -7, 0, 7, 14, and 21 relative to kidding, and individual body condition scores (BCSs) were also recorded. Supplementation with either BBR2 or BBR4 increased (p < 0.05) pre- and post-partum DMI, increasing (p < 0.05) the intakes of net energy for lactating and metabolizable proteins. BBR2 and BBR4 increased (p < 0.05) post-partum milk production as well as fat-corrected milk (FCM), energy-corrected milk (ECM), and feed efficiency, indicating the alleviating effect of BBR on the negative energy balance (NEB) in transition goats. The daily ingestion of either 2 or 4 g BBR reduced (p < 0.05) plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and increased (p < 0.05) the dynamic change in the liver activity index (LAI) and liver functionality index (LFI), implying its hepatoprotective effect on transition goats. Overall, the results suggest that BBR supplementation of at least 2 g/d may help to ameliorate insulin resistance (IR) and fat metabolism disorders initiated by the NEB in transition dairy goats.
Collapse
|
20
|
Hamzaoui S, Caja G, Such X, Albanell E, Salama AAK. Milk Production and Energetic Metabolism of Heat-Stressed Dairy Goats Supplemented with Propylene Glycol. Animals (Basel) 2020; 10:ani10122449. [PMID: 33371268 PMCID: PMC7766538 DOI: 10.3390/ani10122449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/21/2023] Open
Abstract
Heat-stressed dairy animals increase their reliance on glucose. This elevated glucose demand is partially met by increasing the conversion of glucogenic amino acids (AA) in the liver. Propylene glycol (PG) is a glucogenic precursor and was not tested in dairy goats under thermoneutral (TN) and heat stress (HS) conditions simultaneously. We hypothesize that if HS-goats are fed with PG, they would get more glucose and consequently spare more glucogenic AA for milk protein synthesis rather than gluconeogenesis. Eight multiparous dairy goats (40.8 ± 1.1 kg body weight; 84 ± 1 days in milk) were used in a replicated 4 × 4 Latin square design of 4 periods; 21 d each (14 d adaptation, 5 d for measurements, and 2 d of transition). Goats were allocated to one of 4 treatments in a 2 × 2 factorial arrangement. Factors were control (CO) without PG or 5% of PG, and thermoneutral (TN; 15 to 20 °C) or heat stress (HS; 12 h/d at 37 °C and 12 h/d at 30 °C) conditions. Feed intake, rectal temperature, respiratory rate, milk yield, milk composition, and blood metabolites were measured. Compared to TN, HS goats had lower (p < 0.01) feed intake (-34%), fat-corrected milk (-15%), and milk fat (-15%). Heat-stressed goats also tended (p < 0.10) to produce milk with lower protein (-11%) and lactose (-4%) contents. Propylene glycol increased blood glucose (+7%; p < 0.05), blood insulin (+37%; p < 0.10), and body weight gain (+68%; p < 0.05), but decreased feed intake (-9%; p < 0.10) and milk fat content (-23%; p < 0.01). Furthermore, blood non-esterified fatty acids (-49%) and β-hydroxybutyrate (-32%) decreased (p < 0.05) by PG. In conclusion, supplementation of heat-stressed dairy goats with propylene glycol caused milk fat depression syndrome, but reduced body weight loss that is typically observed under HS conditions. Supplementation with lower doses of PG would avoid the reduced feed intake and milk fat depression, but this should be tested.
Collapse
|
21
|
Mikuła R, Pruszyńska-Oszmałek E, Kołodziejski PA, Nowak W. Propylene Glycol and Maize Grain Supplementation Improve Fertility Parameters in Dairy Cows. Animals (Basel) 2020; 10:ani10112147. [PMID: 33218134 PMCID: PMC7698892 DOI: 10.3390/ani10112147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022] Open
Abstract
Simple Summary The excessive mobilization of fatty acids from dairy cows’ adipose tissue increases blood non-esterified fatty acid concentrations and could have a negative effect on the fertility parameters and milk yield, as well as increase the risk of metabolic disorders and also result in early-lactation culling risk. Propylene glycol and rumen-protected starch from maize grain are commonly used as glucose precursors reducing nonesterified fatty acid levels; however, no such comparisons are available, thus it was decided to assume it as the aim of this study. Propylene glycol had a positive effect on shortening the period to first ovulation. Propylene glycol and maize grain improved the first service conception rate and decreased the number of services per conception in cows. In conclusion, both treatments with propylene glycol and maize grain had a slight effect on the metabolic profile and no effect on milking performance, yet they improved fertility parameters, which could indirectly enhance milk production economics. Abstract The aim of the study was to determine the effect of propylene glycol and maize grain content by-pass starch supplementation during the transition period and the first 56 days of lactation on blood metabolic indices, milk production and fertility parameters in dairy cows. Seventy-five Polish Holstein-Friesian dairy cows were assigned to treatment 21 days before calving. The treatments included: TG—2.5 kg triticale grain/cow per day supplemented from 14 days prepartum to day 56 postpartum, PG—2.5 kg triticale grain/cow per day supplemented from day 14 before parturition to day 56 postpartum, and 400 g propylene glycol/cow per day from 14 days prepartum to 14 days of lactation and MG—2.5 kg maize grain/cow per day supplemented from day 14 before parturition to day 56 postpartum. PG and MG had an effect resulting in the highest glucose concentration at 28 d of lactation. Cows assigned to the PG and MG groups had significantly higher cholesterol levels confronted with TG group at day 14 of lactation, while at days 28 and 56 the same difference was observed only between the MG and TG groups. PG had an effect on shortening the period to first ovulation. PG and MG improved the first service conception rate and decreased the number of services per conception in cows. In conclusion, both treatments of dairy cows with PG and MG improved their fertility parameters, while they had a slight effect on their metabolic profile and no effect on their milking performance.
Collapse
Affiliation(s)
- Robert Mikuła
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
- Correspondence:
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (E.P.-O.); (P.A.K.)
| | - Paweł Antoni Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (E.P.-O.); (P.A.K.)
| | - Włodzimierz Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| |
Collapse
|