1
|
Narciso MHPM, Wolfe AR, Uwiera RRE, Laarman AH. Effects of single-dose ruminal infusions of high or low short-chain fatty acid concentrations and high or low pH on apparent total-tract digestibility and hindgut fermentation of preweaning dairy calves. J Dairy Sci 2025; 108:499-510. [PMID: 39414007 DOI: 10.3168/jds.2024-24797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Although the importance of pH and short-chain fatty acids (SCFA) on rumen development are well-known, their impact on the small and large intestine are unclear. This study investigated how single-dose ruminal infusions with high or low SCFA concentrations and high or low pH affect calves' productivity, as well as physiological parameters associated with hindgut acidosis at 3 time points in 49 d. Holstein bull calves (n = 32) were individually housed and fed milk replacer (900 g/d) twice daily and calf starter and water ad libitum. At d 10 ± 3 of life, the rumens were fistulated and cannulated. At d 14 of life, calves were grouped by BW and assigned in a 2 × 2 factorial arrangement of treatments: high or low SCFA concentration (285 vs. 10 mM) and high or low pH (6.2 vs. 5.2), creating 4 treatment groups: high SCFA concentration, high pH (HS-HP); high SCFA concentration, low pH (HS-LP); low SCFA concentration, high pH (LS-HP); and low SCFA concentration, low pH (LS-LP). On d 21, 35, 49, feces were sampled to calculate apparent total-tract digestibility, determinate organic acid concentrations (i.e., SCFA, branched-chain fatty acid [BCFA], and lactic acid), and pH. Afterward, the rumen was evacuated and underwent a single-dose infusion for 4 h with 1 of 4 treatment buffers. After completion of rumen infusion on d 49, calves were killed and the tissue weight and length were recorded, along with the digesta pH of the rumen, duodenum, jejunum, ileum, cecum, colon, and rectum. Data were analyzed with main factors as fixed effects and repeated measures for weekly measurements. Treatments did not affect performance parameters such as feed intake, ADG, apparent total-tract digestibility and gut measurements. In the duodenum, jejunum, and ileum, HS-HP had a greater digesta pH than LS-HP, whereas the hindgut digesta pH was only affected by the SCFA concentration. A high SCFA concentration increased the concentration of colonic isovaleric acid and fecal BCFA, whereas only colonic acetic acid and fecal lactic acid concentrations were affected by treatment. Fecal SCFA and BCFA concentrations increased mainly on d 35. In summary, 4 h of physiological buffer infusion in the rumen does not change apparent total-tract digestibility and gut measurements but does affect hindgut fermentation parameters (i.e., organic acid concentrations and digesta pH). In addition, calves can experience increased risks of hindgut acidosis around 35 d of life.
Collapse
Affiliation(s)
- M H P M Narciso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6B 2P5, Canada
| | - A R Wolfe
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6B 2P5, Canada
| | - R R E Uwiera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6B 2P5, Canada
| | - A H Laarman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6B 2P5, Canada.
| |
Collapse
|
2
|
Revilla-Ruiz A, Carulla P, Fernandez-Novo A, de Mercado E, Pérez-Navarro A, Patrón-Collantes R, Sebastián F, Pérez-Garnelo SS, González-Martín JV, Estellés F, Villagrá A, Astiz S. Effect of Milk-Feeding Frequency and Calcium Gluconate Supplementation on Growth, Health, and Reproductive and Metabolic Features of Holstein Heifers at a Rearing Farm. Animals (Basel) 2024; 14:1336. [PMID: 38731339 PMCID: PMC11083690 DOI: 10.3390/ani14091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
We compared the effects of milk-feeding in 288 Holstein calves (72 per group) which were fed twice (2F) or thrice (3F) daily, with or without the addition of hydrogenated fat-embedded calcium gluconate (G) supplemented in the starter food and in the daily diet up to the age of 9 months, on the calves' metabolism, growth, health, and reproductive efficiency up to first pregnancy. The calves received 6 L of milk replacer (130 g/L) and had ad libitum access to water and textured calf starter with or without gluconate. Gluconate supplementation promoted a "catch-up" in growth in supplemented calves compared to their counterparts that did not receive gluconate. Gluconate appeared to reduce animal metabolic stress during key events, such as weaning and transfer into open-door pens, reducing fructosamine (352.61 vs. 303.06 in 3FG and 3F, respectively; p = 0.028) and urea (3F revealed the highest values compared with the other three groups: 19.06 for 3F vs. 13.9 (2F), 13.7 (2FG), and 14.3 (3FG), respectively, p = 0.002) from weaning onwards. The feeding of dairy calves with milk replacer three rather than two times per day tended to be associated with better health from weaning to 4 months old; parameters such as ultrasound lung score and calf health score improved over time (p < 0.001). Thrice-daily feeding with milk replacer tended to reduce the number of artificial inseminations per pregnancy in heifers by 0.2 points (p = 0.092). We confirmed significant correlations between early health and growth parameters and reproductive efficiency and a positive correlation between body weight and average daily weight gain and the thickness of the back fat layer in young heifers (r = 0.245; p < 0.0001; r = 0.214; p < 0.0001 respectively). Our study was conducted on a commercial farm with reasonably effective animal management, so baseline welfare was likely satisfactory.
Collapse
Affiliation(s)
- Angel Revilla-Ruiz
- Medicine and Surgery Department, Veterinary Faculty, Complutense University of Madrid (UCM), Avda. Pta. de Hierro s/n, 28040 Madrid, Spain; (A.R.-R.); (J.V.G.-M.)
| | - Patricia Carulla
- Institute of Animal Science and Technology, Valencia Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (P.C.); (F.E.)
- Cowvet SL, País Valenciano Avenue 6, 46117 Betera-Valencia, Spain; (A.P.-N.); (F.S.)
| | - Aitor Fernandez-Novo
- Department of Veterinary Medicine, School of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odon, Spain; (A.F.-N.); (R.P.-C.)
| | - Eduardo de Mercado
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Avda. Pta. Hierro s/n, 28040 Madrid, Spain; (E.d.M.); (S.S.P.-G.)
| | | | - Raquel Patrón-Collantes
- Department of Veterinary Medicine, School of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, 28670 Villaviciosa de Odon, Spain; (A.F.-N.); (R.P.-C.)
| | - Francisco Sebastián
- Cowvet SL, País Valenciano Avenue 6, 46117 Betera-Valencia, Spain; (A.P.-N.); (F.S.)
| | - Sonia S. Pérez-Garnelo
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Avda. Pta. Hierro s/n, 28040 Madrid, Spain; (E.d.M.); (S.S.P.-G.)
| | - Juan V. González-Martín
- Medicine and Surgery Department, Veterinary Faculty, Complutense University of Madrid (UCM), Avda. Pta. de Hierro s/n, 28040 Madrid, Spain; (A.R.-R.); (J.V.G.-M.)
| | - Fernando Estellés
- Institute of Animal Science and Technology, Valencia Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (P.C.); (F.E.)
| | - Arantxa Villagrá
- Centro de Tecnología Animal-Institut Valencià d’Investigacions Agràries (CITA-IVIA), Polígono La Esperanza 100, 12400 Segorbe, Spain;
| | - Susana Astiz
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Avda. Pta. Hierro s/n, 28040 Madrid, Spain; (E.d.M.); (S.S.P.-G.)
| |
Collapse
|
3
|
Zhao Y, Yu S, Zhao H, Li L, Li Y, Liu M, Jiang L. Integrated multi-omics analysis reveals the positive leverage of citrus flavonoids on hindgut microbiota and host homeostasis by modulating sphingolipid metabolism in mid-lactation dairy cows consuming a high-starch diet. MICROBIOME 2023; 11:236. [PMID: 37880759 PMCID: PMC10598921 DOI: 10.1186/s40168-023-01661-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Modern dairy diets have shifted from being forage-based to grain and energy dense. However, feeding high-starch diets can lead to a metabolic disturbance that is linked to dysregulation of the gastrointestinal microbiome and systemic inflammatory response. Plant flavonoids have recently attracted extensive interest due to their anti-inflammatory effects in humans and ruminants. Here, multi-omics analysis was conducted to characterize the biological function and mechanisms of citrus flavonoids in modulating the hindgut microbiome of dairy cows fed a high-starch diet. RESULTS Citrus flavonoid extract (CFE) significantly lowered serum concentrations of lipopolysaccharide (LPS) proinflammatory cytokines (TNF-α and IL-6), acute phase proteins (LPS-binding protein and haptoglobin) in dairy cows fed a high-starch diet. Dietary CFE supplementation increased fecal butyrate production and decreased fecal LPS. In addition, dietary CFE influenced the overall hindgut microbiota's structure and composition. Notably, potentially beneficial bacteria, including Bacteroides, Bifidobacterium, Alistipes, and Akkermansia, were enriched in CFE and were found to be positively correlated with fecal metabolites and host metabolites. Fecal and serum untargeted metabolomics indicated that CFE supplementation mainly emphasized the metabolic feature "sphingolipid metabolism." Metabolites associated with the sphingolipid metabolism pathway were positively associated with increased microorganisms in dairy cows fed CFE, particularly Bacteroides. Serum lipidomics analysis showed that the total contents of ceramide and sphingomyelin were decreased by CFE addition. Some differentially abundant sphingolipid species were markedly associated with serum IL-6, TNF-α, LPS, and fecal Bacteroides. Metaproteomics revealed that dietary supplementation with CFE strongly impacted the overall fecal bacterial protein profile and function. In CFE cows, enzymes involved in carbon metabolism, sphingolipid metabolism, and valine, leucine, and isoleucine biosynthesis were upregulated. CONCLUSIONS Our research indicates the importance of bacterial sphingolipids in maintaining hindgut symbiosis and homeostasis. Dietary supplementation with CFE can decrease systemic inflammation by maintaining hindgut microbiota homeostasis and regulating sphingolipid metabolism in dairy cows fed a high-starch diet. Video Abstract.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuqin Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
4
|
Lamers K, Steele M, Cangiano L. A novel method for isolation and flow cytometry analysis of intraepithelial lymphocytes from colon biopsies. JDS COMMUNICATIONS 2023; 4:433-437. [PMID: 37727247 PMCID: PMC10505762 DOI: 10.3168/jdsc.2022-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/08/2023] [Indexed: 09/21/2023]
Abstract
Investigating the immune responses of the intestine in response to different insults is predominantly limited to indirect methods such as circulating markers of intestinal health or gene expression from dissections. We describe here a validated protocol for the isolation and subsequent flow cytometry analysis of intestinal intraepithelial lymphocytes (IEL) from colonic biopsy samples. Colon biopsy samples were collected with endoscopy forceps from Holstein dairy bull calves at d 2, 28, and 42 of life. The biopsies were put into an isolation solution of Hanks' balanced salt solution, and fetal bovine serum followed by digestion solution. The solution was filtered and the flow-through, containing IEL, was stained with fluorescent antibodies for flow cytometry analysis. Density gradient separation of the isolate yielded higher viability and cleaner samples for flow cytometry analysis. Anti-bovine γ chain of the T cell receptor was used to identify populations of gamma delta (γδ) T cells via flow cytometry. In addition, γδ T cell subsets were identified using an anti-bovine antibody against the coreceptor workshop cluster 1. This method allowed for the precise identification of lymphocyte populations and evaluation of the proportion of different subsets of γδ T cells from intestinal IEL over time. The technique described here will allow the research community to characterize intestinal immune function over time and improve our understanding of how different management and nutritional strategies affect intestinal health.
Collapse
Affiliation(s)
- K. Lamers
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M.A. Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - L.R. Cangiano
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Seymour DJ, Sanz-Fernandez MV, Daniel JB, Martín-Tereso J, Doelman J. Evaluating lactation performance of multiparous dairy cattle to prepartum and/or postpartum supplementation of fat-embedded calcium gluconate. Transl Anim Sci 2023; 7:txad104. [PMID: 37701127 PMCID: PMC10494878 DOI: 10.1093/tas/txad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023] Open
Abstract
Prebiotic compounds may be supplemented in the diet to improve animal health and performance in a variety of ways. In dairy cattle, the transition from pregnancy through parturition and lactation represents a critical life stage with many concurrent stressors. The objectives of this study were to evaluate responses to the provision of a hindgut-targeted prebiotic compound (calcium gluconate; HFCG) when supplemented prepartum and/or postpartum in a 2 × 2 factorial design. One hundred and sixty-four multiparous Holstein cattle were enrolled and followed from approximately 21 d prior to calving until 100 d of lactation. Treatments were administered as a pelleted compound feed offered in the rotary milking parlor once daily prepartum and thrice daily postpartum. Information pertaining to milk production and body weight were automatically recorded by the milking equipment, and information pertaining to reproductive and health performance was recorded by farm staff. Cattle that received HFCG prepartum were confirmed pregnant approximately 21 d earlier (P = 0.024). Cattle that received HFCG both pre- and postpartum had 9% to 10% higher yields of milk protein, fat, and energy-corrected milk (P ≤ 0.037) from weeks 4 to 9 of lactation relative to those that received HFCG exclusively prepartum. Conversely, cattle that received HFCG exclusively postpartum had 9% to 10% higher yields of milk protein, fat, and energy-corrected milk (P ≤ 0.037) from weeks 9 to 14 of lactation relative to those that received exclusively the negative control in both periods. The mechanism underlying these responses remains unclear, however, we hypothesize that these responses are due to localized reductions in inflammation in the gut and/or signaling to extragastrointestinal tissues altering energy partitioning and balance.
Collapse
Affiliation(s)
- D J Seymour
- Ruminant Research Centre, Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, The Netherlands
| | - M V Sanz-Fernandez
- Ruminant Research Centre, Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, The Netherlands
| | - J B Daniel
- Ruminant Research Centre, Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, The Netherlands
| | - J Martín-Tereso
- Ruminant Research Centre, Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, The Netherlands
| | - J Doelman
- Ruminant Research Centre, Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, The Netherlands
| |
Collapse
|
6
|
TAN K, NISHIMURA K, UMEDA K, YAMADA K, IKUTA K, SHINGU H, KUSHIBIKI S. Effect of anti-lipopolysaccharide of Escherichia coli antibody feeding for Holstein calves on ruminal lipopolysaccharide activity and plasma metabolites concentrations during pre- and post-weaning periods. J Vet Med Sci 2023; 85:813-819. [PMID: 37344442 PMCID: PMC10466060 DOI: 10.1292/jvms.23-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
This study was performed to examine the effects of anti- lipopolysaccharide (LPS) of Escherichia coli chicken egg Yolk immunoglobulin (IgY) provided to calves for 7 weeks during the pre- and post-weaning periods on rumen LPS activity, plasma acute phase protein (APP) concentrations, and metabolic parameters. A total of 30 Holstein calves were randomly assigned to two groups of 15 each: an IgY group fed Anti-E. coli LPS IgY, and a control group fed whole egg powder as a placebo. The study was conducted on calves aged 3-10 weeks, weaned at 7 weeks. The ruminal LPS activity of the IgY group was approximately 60% lower than the control group at 10 weeks of age. Plasma APP and cytokine concentrations in the IgY group did not differ from those in the control group. The daily weight gain in the IgY group was significantly higher than the control group for the whole experimental period. Plasma albumin/globulin was lower (P<0.05), and plasma aspartate transferase concentration was higher (P<0.05) in the IgY group than in the control group during the experimental period. In conclusion, feeding Anti-E. coli LPS IgY for 7 weeks pre- and post-weaning remarkably reduced the rumen LPS activity and improved the daily weight gain. The impact of Anti-E. coli LPS IgY on LPS activities in the lower gastrointestinal tract, and elucidation as to the mechanism responsible for the improvement in daily weight gain require further investigation.
Collapse
Affiliation(s)
- Kei TAN
- Yamagata Prefectural Syonai Livestock Hygiene Division,
Yamagata, Japan
| | - Keiko NISHIMURA
- )Miyazaki Prefectural Minaminaka Agricultural Extension
Center, Miyazaki, Japan
| | | | | | - Kentarou IKUTA
- Hyogo Prefectural Technology Center of Agriculture, Forestry
and Fisheries, Hyogo, Japan
| | | | - Shiro KUSHIBIKI
- Institute of Livestock and Grassland Science, NARO, Ibaraki,
Japan
| |
Collapse
|
7
|
Fresno Rueda A, Griffith JE, Kruse C, St-Pierre B. Effects of grain-based diets on the rumen and fecal bacterial communities of the North American bison ( Bison bison). Front Microbiol 2023; 14:1163423. [PMID: 37485522 PMCID: PMC10359189 DOI: 10.3389/fmicb.2023.1163423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
To overcome the challenges of pasture-finishing of bison, producers commonly feed them with higher energy, grain-based diets to reach the desired market weight. However, decades of research on domesticated ruminants have shown that such diets can have profound effects on the composition of gut microbial communities. To gain further insight, the 16S rRNA gene-based study described in this report aimed to compare the composition of ruminal and fecal bacterial communities from two herds of bison heifers (n = 20/herd) raised on different ranches that were both transitioned from native pasture to a grain-based, free-choice diet for ~100 days prior to slaughter. Comparative analyses of operational taxonomic unit (OTU) composition, either by alpha diversity indices, principal coordinate analysis (PCoA), or on the most abundant individual OTUs, showed the dramatic effect of a diet on the composition of both rumen and fecal bacterial communities in bison. Indeed, feeding a grain-based diet resulted in a lower number of rumen and fecal bacterial OTUs, respectively, compared to grazing on pasture (p < 0.05). PCoA revealed that the composition of the rumen and fecal bacterial communities from the two herds was more similar when they were grazing on native pastures compared to when they were fed a grain-based, free-choice diet. Finally, a comparative analysis of the 20 most abundant OTUs from the rumen and fecal communities further showed that the representation of all these species-level bacterial groups differed (p < 0.05) between the two dietary treatments. Together, these results provide further insights into the rumen and fecal microbiomes of grazing bison and their response to grain-based diet regimens commonly used in intensive ruminant production systems.
Collapse
Affiliation(s)
- Anlly Fresno Rueda
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Jason Eric Griffith
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| | - Carter Kruse
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
- Turner Institute of Ecoagriculture, Bozeman, MT, United States
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
8
|
Abeyta MA, Horst EA, Mayorga EJ, Goetz BM, Al-Qaisi M, McCarthy CS, O'Neil MR, Dooley BC, Piantoni P, Schroeder GF, Baumgard LH. Effects of hindgut acidosis on metabolism, inflammation, and production in dairy cows consuming a standard lactation diet. J Dairy Sci 2023; 106:1429-1440. [PMID: 36460494 DOI: 10.3168/jds.2022-22303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
Postruminal intestinal barrier dysfunction caused by excessive hindgut fermentation may be a source of peripheral inflammation in dairy cattle. Therefore, the study objectives were to evaluate the effects of isolated hindgut acidosis on metabolism, inflammation, and production in lactating dairy cows. Five rumen-cannulated lactating Holstein cows (32.6 ± 7.2 kg/d of milk yield, 242 ± 108 d in milk; 642 ± 99 kg of body weight; 1.8 ± 1.0 parity) were enrolled in a study with 2 experimental periods (P). During P1 (4 d), cows were fed ad libitum a standard lactating cow diet (26% starch dry matter) and baseline data were collected. During P2 (7 d), all cows were fed the same diet ad libitum and abomasally infused with 4 kg/d of pure corn starch (1 kg of corn starch + 1.25 L of H2O/infusion at 0600, 1200, 1800, and 0000 h). Effects of time (hour relative to the first infusion or day) relative to P1 were evaluated using PROC MIXED in SAS (version 9.4; SAS Institute Inc.). Infusing starch markedly reduced fecal pH (5.84 vs. 6.76) and increased fecal starch (2.2 to 9.6% of dry matter) relative to baseline. During P2, milk yield, milk components, energy-corrected milk yield, and voluntary dry matter intake remained unchanged. At 14 h, plasma insulin and β-hydroxybutyrate increased (2.4-fold and 53%, respectively), whereas circulating glucose concentrations remained unaltered. Furthermore, blood urea nitrogen increased at 2 h (23%) before promptly decreasing below baseline at 14 h (13%). Nonesterified fatty acids tended to decrease from 2 to 26 h (40%). Circulating white blood cells and neutrophils increased on d 4 (36 and 73%, respectively) and somatic cell count increased on d 5 (4.8-fold). However, circulating serum amyloid A and lipopolysaccharide-binding protein concentrations were unaffected by starch infusions. Despite minor changes in postabsorptive energetics and leukocyte dynamics, abomasal starch infusions and the subsequent hindgut acidosis had little or no meaningful effects on biomarkers of immune activation or production variables.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - M R O'Neil
- Department of Animal Science, Iowa State University, Ames 50011
| | - B C Dooley
- Department of Animal Science, Iowa State University, Ames 50011
| | - P Piantoni
- Cargill Animal Nutrition Innovation Center, Elk River, MN 55330
| | - G F Schroeder
- Cargill Animal Nutrition Innovation Center, Elk River, MN 55330
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
9
|
Seymour DJ, Winia PA, Uittenbogaard G, Carson M, Doelman J. Supplementation of hydrogenated fat-embedded calcium gluconate improves milk fat content and yield in multiparous Holstein dairy cattle. J DAIRY RES 2023; 90:1-3. [PMID: 36632800 DOI: 10.1017/s0022029922000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This research communication reports the responses to supplementing dairy cattle with a hydrogenated fat-embedded calcium gluconate feed additive. The role of hindgut health in ruminant performance and wellbeing is an area of growing interest. Various prebiotic compounds have been used to promote lower gut health in various non-ruminant species. Calcium gluconate, a prebiotic compound, has previously been observed to increase milk fat yield when fed to ruminants in a form capable of resisting fermentation in the rumen, though the mechanism(s) behind this response remain unclear. The objective of this study was to compare the responses of lactating cattle to two different supplementation levels of a hydrogenated fat-embedded calcium gluconate (HFCG) product to evaluate a potential linear dose response. Forty-six lactating Holstein dairy cattle were used in a 3 × 3 replicated Latin square design with 28 d periods to evaluate a previously used dose of HFCG (approximately 16 g/d) with both a negative control and a dose of 25 g/d. Supplementation of multiparous animals with 16 g/d HFCG significantly (P < 0.05) increased milk fat yield and content relative to the negative control, and subsequently improved gross feed efficiency (P < 0.05); additionally, the presence of a potential non-linear dose response was observed for these parameters. Responses when supplemented with 25 g/d HFCG did not differ from the negative control. No production responses were observed in primiparous animals. The mode of action of HFCG, in addition to the potential differential response in primiparous animals remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Dave J Seymour
- Trouw Nutrition R&D, PO Box 299, 3800 Amersfoort AG, the Netherlands
| | - Pieter A Winia
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 Wageningen AH, the Netherlands
| | - Gera Uittenbogaard
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 Wageningen AH, the Netherlands
| | - Michelle Carson
- Trouw Nutrition Canada, 7504 McLean Rd E., Puslinch, Ontario, Canada N0B 2J0
| | - John Doelman
- Trouw Nutrition R&D, PO Box 299, 3800 Amersfoort AG, the Netherlands
| |
Collapse
|
10
|
Meng S, Wang YU, Wang S, Qian W, Shao Q, Dou M, Zhao S, Wang J, Li M, An Y, He L, Zhang C. Establishment and characterization of an immortalized bovine intestinal epithelial cell line. J Anim Sci 2023; 101:skad215. [PMID: 37351870 PMCID: PMC10347977 DOI: 10.1093/jas/skad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
Primary bovine intestinal epithelial cells (PBIECs) are an important model for studying the molecular and pathogenic mechanisms of diseases affecting the bovine intestine. It is difficult to obtain and grow PBIECs stably, and their short lifespan greatly limits their application. Therefore, the purpose of this study was to create a cell line for exploring the mechanisms of pathogen infection in bovine intestinal epithelial cells in vitro. We isolated and cultured PBIECs and established an immortalized BIEC line by transfecting PBIECs with the pCI-neo-hTERT (human telomerase reverse transcriptase) recombinant plasmid. The immortalized cell line (BIECs-21) retained structure and function similar to that of the PBIECs. The marker proteins characteristic of epithelial cells, cytokeratin 18, occludin, zonula occludens protein 1 (ZO-1), E-cadherin and enterokinase, were all positive in the immortalized cell line, and the cell structure, growth rate, karyotype, serum dependence and contact inhibition were normal. The hTERT gene was successfully transferred into BIECs-21 where it remained stable and was highly expressed. The transport of short-chain fatty acids and glucose uptake by the BIECs-21 was consistent with PBIECs, and we showed that they could be infected with the intestinal parasite, Neospora caninum. The immortalized BIECs-21, which have exceeded 80 passages, were structurally and functionally similar to the primary BIECs and thus provide a valuable research tool for investigating the mechanism of pathogen infection of the bovine intestinal epithelium in vitro.
Collapse
Affiliation(s)
- Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
- Innovative Research Team of Livestock Intelligent Breeding and Equipment, Longmen Laboratory, Luoyang 471023, China
| | - Y uexin Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Weifeng Qian
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Qi Shao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Shujuan Zhao
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Mengyun Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Livestock and Poultry Eerging Disease Detection and Control, Luoyang 471023, China
| |
Collapse
|
11
|
Xu D, Cheng J, Zhang D, Huang K, Zhang Y, Li X, Zhao Y, Zhao L, Wang J, Lin C, Yang X, Zhai R, Cui P, Zeng X, Huang Y, Ma Z, Liu J, Han K, Liu X, Yang F, Tian H, Weng X, Zhang X, Wang W. Relationship between hindgut microbes and feed conversion ratio in Hu sheep and microbial longitudinal development. J Anim Sci 2023; 101:skad322. [PMID: 37742310 PMCID: PMC10576521 DOI: 10.1093/jas/skad322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Feed efficiency is an important indicator in the sheep production process, which plays an important role in improving economic benefits and strengthening energy conservation and emission reduction. Compared with the rumen, the fermentation of the hindgut microorganisms can also provide part of the energy for the host, and the composition of the hindgut microorganisms will affect the feed efficiency. Therefore, we hope to find new ways to regulate sheep feed efficiency by studying the sheep gut microbes. In this study, male Hu sheep with the same birth date were raised under the same conditions until 180 d old. The sheep were divided into high and low groups according to the feed conversion ratio (FCR) at 80 to 180 d old, and the differences in rectal microorganisms between the two groups were compared. The permutational multivariate analysis (PERMANOVA) test showed that there were differences in microorganisms between the two groups (P < 0.05). Combined with linear fitting analysis, a total of six biomarkers were identified, including Ruminobacter, Eubacterium_xylanophilum_group, Romboutsia, etc. Functional enrichment analysis showed that microorganisms may affect FCR through volatile fatty acids synthesis and inflammatory response. At the same time, we conducted a longitudinal analysis of the hindgut microbes, sampling nine-time points throughout the sheep birth to market stages. The microbiota is clearly divided into two parts: before weaning and after weaning, and after weaning microbes are less affected by before weaning microbial composition.
Collapse
Affiliation(s)
- Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Kai Huang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Kunchao Han
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoqiang Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Fan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Huibin Tian
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiuxiu Weng
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| |
Collapse
|
12
|
Silva TIS, Souza JM, Acedo TS, Carvalho VV, Perdigão A, Silva LAF, Silvestre AM, Niehues MB, Schleifer WF, Casali DM, Martins CL, Arrigoni MDB, Millen DD. Feedlot performance, rumen and cecum morphometrics of Nellore cattle fed increasing levels of diet starch containing a blend of essential oils and amylase or monensin. Front Vet Sci 2023; 10:1090097. [PMID: 36950544 PMCID: PMC10026699 DOI: 10.3389/fvets.2023.1090097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Feed additives used in finishing diets improve energy efficiency in ruminal fermentation, resulting in increased animal performance. However, there is no report evaluating the effect of BEO associated with exogenous α-amylase in response to increased starch content in feedlot diets. Our objective was to evaluate increasing levels of starch in the diet associated with a blend of essential oils plus amylase or sodium Monensin on performance, carcass characteristics, and ruminal and cecal morphometry of feedlot cattle. 210 Nellore bulls were used (initial body weight of 375 ± 13.25), where they were blocked and randomly allocated in 30 pens. The experiment was designed in completely randomized blocks in a 3 × 2 factorial arrangement: three starch levels (25, 35, and 45%), and two additives: a blend of essential oils plus α-amylase (BEO, 90 and 560 mg/kg of DM, respectively) or sodium Monensin (MON, 26 mg/kg DM). The animals were fed once a day at 08:00 ad libitum and underwent an adaptation period of 14 days. The diets consisted of sugarcane bagasse, ground corn, soybean hulls, cottonseed, soybean meal, mineral-vitamin core, and additives. The animals fed BEO35 had higher dry matter intake (P = 0.02) and daily weight gain (P = 0.02). The MON treatment improved feed efficiency (P = 0.02). The treatments BEO35 and BEO45 increased hot carcass weight (P < 0.01). Animals fed BEO presented greater carcass yield (P = 0.01), carcass gain (P < 0.01), rib eye area gain (P = 0.01), and final rib eye area (P = 0.02) when compared to MON. The MON25 treatment improved carcass gain efficiency (P = 0.01), final marbling (P = 0.04), and final subcutaneous fat thickness (P < 0.01). The use of MON reduced the fecal starch% (P < 0.01). Cattle-fed BEO increased rumen absorptive surface area (P = 0.05) and % ASA papilla area (P < 0.01). The MON treatment reduced the cecum lesions score (P = 0.02). Therefore, the use of BEO with 35 and 45% starch increases carcass production with similar biological efficiency as MON; and animals consuming MON25 improve feed efficiency and reduce lesions in the rumen and cecum.
Collapse
Affiliation(s)
- Thaiano I. S. Silva
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Johnny M. Souza
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | | | | | | | - Leandro A. F. Silva
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Antonio M. Silvestre
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Maria Betania Niehues
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Werner F. Schleifer
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Daniel M. Casali
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
| | - Cyntia L. Martins
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Mario D. B. Arrigoni
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - Danilo D. Millen
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (UNESP), Dracena, Brazil
- *Correspondence: Danilo D. Millen
| |
Collapse
|
13
|
Gao K, Geng C. Comparison of rectum fecal bacterial community of finishing bulls fed high-concentrate diets with active dry yeast and yeast culture supplementation. Anim Biosci 2023; 36:63-74. [PMID: 36108683 PMCID: PMC9834660 DOI: 10.5713/ab.22.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The objective of this study was to investigate the effects of feeding active dry yeast (ADY) and yeast culture (YC) on fecal bacterial community in finishing bulls fed high-concentrate diets in the same experimental environment. METHODS Forty-five healthy finishing cattle (Simmental×Chinese Luxi yellow bulls; 24 months; 505±29 kg) were randomly divided into three groups: i) CON group (control group, only fed basal diet), ii) ADY group (fed basal diet + active dry yeast), and iii) YC group (fed basal diet + yeast culture). At the end of the trial, nine rectum fecal samples were randomly selected from each group for bacterial DNA sequencing. RESULTS There was no difference among groups about alpha diversity indices (all p>0.05), including ACE, Chao 1, Shannon, and Simpson indices. Principal component analysis and non-metric multidimensional scaling analysis showed a high similarity among three groups. Compared with CON group, ADY and YC groups had greater relative abundance of c_Clostridia, o_Oscillospirales, and f_Oscillospiraceae, but lesser relative abundance of g_Megasphaera, and s_Megasphaera_elsdenii (all p<0.01). And, the relative abundances of p_Firmicutes (p = 0.03), s_Prevotella_sp (p = 0.03), o_Clostridiales (p<0.01), g_Clostridium (p<0.01), f_Caloramatoraceae (p<0.01), and f_Ruminococcaceae (p = 0.04) were increased in the ADY group. The PICRUSt2 prediction results showed that the metabolic pathways had no significant differences among groups (p>0.05). Besides, the relative abundance of c_Clostridia (r = 0.42), and f_Oscillospiraceae (r = 0.40) were positively correlated to average daily gain of finishing bulls (p<0.05). CONCLUSION Both of ADY and YC had no effect on diversity of fecal bacteria in finishing bulls, but the supplementation of ADY and YC can improve the large intestinal function in finishing bulls by increasing the abundance of cellulolytic bacteria and altering the abundance of lactic acid-utilizing bacteria.
Collapse
Affiliation(s)
- Kai Gao
- Agricultural College, Yanbian University, Yanji 133000,
China,Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133000,
China
| | - Chunyin Geng
- Agricultural College, Yanbian University, Yanji 133000,
China,Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji 133000,
China,Corresponding Author: Chunyin Geng, E-mail:
| |
Collapse
|
14
|
Exploring variation in the fecal microbial communities of Kasaragod Dwarf and Holstein crossbred cattle. Antonie Van Leeuwenhoek 2023; 116:53-65. [PMID: 36450879 DOI: 10.1007/s10482-022-01791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/30/2022] [Indexed: 12/02/2022]
Abstract
The gut microbiota and its impact on health and nutrition in animals, including cattle has been of intense interest in recent times. Cattle, in particular indigenous varieties like Kasaragod Dwarf cow, have not received the due consideration given to other non-native cattle breeds, and the composition of their fecal microbiome is yet to be established. This study applied 16S rRNA high-throughput sequencing of fecal samples and compared the Kasaragod Dwarf with the highly prevalent Holstein crossbred cattle. Variation in their microbial composition was confirmed by marker gene-based taxonomic analysis. Principle Coordinate Analysis (PCoA) showed the distinct microbial architecture of the two cattle types. While the two cattle types possess unique signature taxa, in Kasaragod Dwarf cattle, many of the identified genera, including Anaerovibrio, Succinivibrio, Roseburia, Coprococcus, Paludibacter, Sutterella, Coprobacillus, and Ruminobacter, have previously been shown to be present in higher abundance in animals with higher feed efficiency. This is the first report of Kasaragod Dwarf cattle fecal microbiome profiling. Our findings highlight the predominance of specific taxa potentially associated with different fermentation products and feed efficiency phenotypes in Kasaragod Dwarf cattle compared to Holstein crossbred cattle.
Collapse
|
15
|
Li Y, Ma Q, Shi X, Liu G, Wang C. Integrated multi-omics reveals novel microbe-host lipid metabolism and immune interactions in the donkey hindgut. Front Immunol 2022; 13:1003247. [PMID: 36466834 PMCID: PMC9716284 DOI: 10.3389/fimmu.2022.1003247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 09/07/2023] Open
Abstract
Evidence has shown that gut microbiota play a key role in host metabolism and health; however, little is known about the microbial community in the donkey hindgut as well as the interactions that occur between gut microbes and the host. This study aimed to explore the gut microbiome differences by analyzing the microbial community and differentially expressed genes (DEGs) related to lipid metabolism and the immune system along the donkey hindgut. The hindgut tissues (cecum, ventral colon, and dorsal colon) were separated, and the contents of each section were collected from six male donkeys for multi-omics analysis. There were significant differences in terms of dominant bacteria among the three sections, especially between the cecum and dorsal colon sites. For instance, species belonging to Prevotella and Treponema were most abundant in the cecum, while the Clostridiales_bacterium, Streptococcus_equinus, Ruminococcaceae_bacterium, etc., were more abundant in the dorsal colon. Apart from propionate, the concentrations of acetate, isobutyrate, valerate and isovalerate were all lower in the cecum than in the dorsal colon (p < 0.05). Furthermore, we identified some interesting DEGs related to lipid metabolism (e.g., ME1, MBOAT1, ACOX1, ACOX2 and LIPH) and the immune system (e.g., MUC3B, mucin-2-like, IL17RC, IL1R2, IL33, C1QA, and MMP9) between the cecum and dorsal colon and found that the PPAR pathway was mainly enriched in the cecum. Finally, we found a complex relationship between the gut microbiome and gene expression, especially with respect to the immune system, and combined with protein-protein interaction (PPI) data, suggesting that the PPAR pathway might be responsible, at least in part, for the role of the hindgut microbiota in the donkeys' gut homeostasis. Our data provide an in-depth understanding of the interaction between the microbiota and function in the healthy equine hindgut and may also provide guidance for improving animal performance metrics (such as product quality) and equine welfare.
Collapse
Affiliation(s)
| | | | | | | | - Changfa Wang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
16
|
Galyean M, Hales K. Non-Antimicrobial Methods to Control Liver Abscesses. Vet Clin North Am Food Anim Pract 2022; 38:395-404. [DOI: 10.1016/j.cvfa.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
17
|
Fuerniss LK, Kreikemeier KK, Reed LD, Cravey MD, Johnson BJ. Cecal microbiota of feedlot cattle fed a four-species Bacillus supplement. J Anim Sci 2022; 100:skac258. [PMID: 35953238 PMCID: PMC9576023 DOI: 10.1093/jas/skac258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
As commercial fed cattle consume large amounts of concentrate feedstuffs, hindgut health can be challenged. The objective of this study was to evaluate the effects of a commercially available Bacillus feed additive on cattle health outcomes and cecal microbiota of fed cattle at the time of harvest. Commercial cattle from a single feedlot were identified for characterization of cecal microbial communities using 16S ribosomal ribonucleic acid gene sequencing. All cattle were fed a common corn-based finishing diet. Control cattle (CON) were administered no treatment while treated cattle (TRT) were supplemented daily with 0.050 g of MicroSaf 4C 40 (2 billion colony forming units of Bacillus spp.; Phileo by Lesaffre, Milwaukee, WI). Immediately after harvest and evisceration, the cecal contents of cattle were sampled. After DNA extraction, amplification, and sequencing, reads from CON samples (N = 12) and TRT samples (N = 12) were assigned taxonomy using the SILVA 138 database. Total morbidity, first treatment of atypical interstitial pneumonia, and early shipments for harvest were decreased among TRT cattle compared to CON cattle (P ≤ 0.021). On average, cecal microbiota from TRT cattle had greater alpha diversity than microbiota from CON cattle as measured by Shannon diversity, Pielou's evenness, and feature richness (P < 0.010). Additionally, TRT microbial communities were different (P = 0.001) and less variable (P < 0.001) than CON microbial communities when evaluated by unweighted UniFrac distances. By relative abundance across all samples, the most prevalent phyla were Firmicutes (55.40%, SD = 15.97) and Bacteroidetes (28.17%, SD = 17.74) followed by Proteobacteria (6.75%, SD = 10.98), Spirochaetes (4.54%, SD = 4.85), and Euryarchaeota (1.77%, SD = 3.00). Spirochaetes relative abundance in TRT communities was greater than that in CON communities and was differentially abundant between treatments by ANCOM testing (W = 11); Monoglobaceae was the only family-level taxon identified as differentially abundant (W = 59; greater mean relative abundance in TRT group by 2.12 percentage points). Half (N = 6) of the CON samples clustered away from all other samples based on principal coordinates and represented cecal dysbiosis among CON cattle. The results of this study indicated that administering a four-species blend of Bacillus positively supported the cecal microbial communities of finishing cattle. Further research is needed to explore potential mechanisms of action of Bacillus DFM products in feedlot cattle.
Collapse
Affiliation(s)
- Luke K Fuerniss
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Lynn D Reed
- Phileo by Lesaffre, Milwaukee, WI 52404, USA
| | | | - Bradley J Johnson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
18
|
Williamson JR, Callaway TR, Lourenco JM, Ryman VE. Characterization of rumen, fecal, and milk microbiota in lactating dairy cows. Front Microbiol 2022; 13:984119. [PMID: 36225385 PMCID: PMC9549371 DOI: 10.3389/fmicb.2022.984119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.
Collapse
|
19
|
Seymour DJ, McKnight L, Carson M, Sanz-Fernandez MV, Daniel JB, Metcalf JA, Martín-Tereso J, Doelman J. Effect of hydrogenated fat-embedded calcium gluconate on lactation performance in dairy cows. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogenated fat-embedded calcium gluconate (HFCG), a prebiotic mixture designed to target the hindgut, has improved milk and component yields when supplemented in mid-lactation cows, likely due to improved hindgut health. The objective of this study was to evaluate production responses to HFCG when fed to lactating dairy cattle over a full lactation. Seventy-four Holstein cows (21 primiparous, 53 multiparous) were used in a randomized complete block design comparing supplementation with either HFCG (approximately 16 g/d of supplement delivering approximately 6.4 g of active ingredient) or a negative control from approximately 21 days prior to calving until the end of lactation. In multiparous cattle supplemented with HFCG, average daily milk protein yield (P = 0.037) was increased during the first 8 weeks of lactation, while average daily yields of milk fat, fat- and energy-corrected milk tended (P ≤ 0.075) to increase over the same period of time. Increased yields were likely supported by the concurrent increase in dry matter intake (P = 0.036). Future work is needed to characterize the mode of action of this product within both the hindgut lumen and host, as well as investigate the potential differential responses between primiparous and multiparous animals over the course of lactation.
Collapse
Affiliation(s)
- Dave J. Seymour
- Trouw Nutrition R&D, Ruminant Research Centre, Amersfoort, Netherlands
| | | | - Michelle Carson
- Trouw Nutrition, Quality Assurance, Burford, Ontario, Canada,
| | | | | | - John A. Metcalf
- Trouw Nutrition, Agresearch, 150 RESEARCH LANE SUITE 200, GUELPH, Ontario, Canada, N1G 4T2
| | | | | |
Collapse
|
20
|
Feedlot diets containing different starch levels and additives change the cecal proteome involved in cattle's energy metabolism and inflammatory response. Sci Rep 2022; 12:5691. [PMID: 35383279 PMCID: PMC8983758 DOI: 10.1038/s41598-022-09715-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Diets for feedlot cattle must be a higher energy density, entailing high fermentable carbohydrate content. Feed additives are needed to reduce possible metabolic disorders. This study aimed to analyze the post-rumen effects of different levels of starch (25%, 35%, and 45%) and additives (monensin or a blend of essential oils and exogenous α-amylase) in diets for Nellore feedlot cattle. The cecum tissue proteome was analyzed via two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and then differentially expressed protein spots were identified with liquid chromatography–tandem mass spectrometry (LC–MS/MS). The use of blends of essential oils associated with α-amylase as a feed additive promoted the upregulation of enzymes such as triosephosphate isomerase, phosphoglycerate mutase, alpha-enolase, beta-enolase, fructose-bisphosphate aldolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), l-lactate dehydrogenase B, l-lactate dehydrogenase A chain, l-lactate dehydrogenase, and ATP synthase subunit beta, which promote the degradation of carbohydrates in the glycolysis and gluconeogenesis pathways and oxidative phosphorylation, support pyruvate metabolism through the synthesis of lactate from pyruvate, and participate in the electron transport chain, producing ATP from ADP in the presence of a proton gradient across the membrane. The absence of proteins related to inflammation processes (leukocyte elastase inhibitors) in the cecum tissues of animals fed essential oils and amylase may be because feed enzymes can remain active in the intestine and aid in the digestion of nutrients that escape rumen fermentation; conversely, the effect of monensin is more evident in the rumen and less than 10% results in post-ruminal action, corroborating the hypothesis that ionophore antibiotics have a limited effect on the microbiota and intestinal fermentation of ruminants. However, the increase in starch in these diets promoted a downregulation of enzymes linked to carbohydrate degradation, probably caused by damage to the cecum epithelium due to increased responses linked to inflammatory injuries.
Collapse
|
21
|
Wottlin LR, Edrington TS, Anderson RC. Salmonella Carriage in Peripheral Lymph Nodes and Feces of Cattle at Slaughter Is Affected by Cattle Type, Region, and Season. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.859800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Salmonella is a significant food safety concern in commercial beef production, and some contamination is thought to occur by inclusion of Salmonella-infected peripheral lymph nodes (LN) in ground beef and through fecal contamination. Surveillance in processing plants assists packers in risk management of Salmonella by understanding seasonal trends and risks associated with different cattle types. Approximately 25 fecal samples and 20 LN were collected from animals representing each of five cattle types (cull beef cattle, cull dairy cows, conventional feedlot cattle, all-natural feedlot cattle raised without pharmaceuticals, and grass-finished cattle) and each of five climate regions (mixed-temperatures and dry, mixed-temperatures and humid, hot and humid, hot and dry, cold) during each of three seasons (summer, fall, winter) to better characterize Salmonella inputs into a commercial cattle processing facility. In total, 1,840 fecal samples and 1,550 LN samples were collected. Fecal samples and LN were cultured for Salmonella, and select isolates were serogrouped and screened for antimicrobial resistance. Conventional feedlot cattle had the highest LN Salmonella concentrations (1.17 log10 CFU/g LN) in this data set, while cull dairy cows had the highest fecal Salmonella concentrations (1.96 log10 CFU/g feces). Conventional feedlot cattle and cull dairy cows had the greatest Salmonella prevalence in both LN (32 and 18%, respectively) and feces (37 and 49%, respectively), while all-natural feedlot cattle had the lowest prevalence in the LN (3%) and feces (7%). As expected, Salmonella prevalence and concentration was lowest for all cattle types during winter compared to warmer seasons. When examined by climate region, a greater Salmonella prevalence in both feces and LN was observed in climate region 4 (hot-dry), than the other regions. Only 21 of 50 Salmonella isolates examined for antimicrobial susceptibility were identified as multidrug resistant (MDR); cull dairy cows were responsible for 48% of MDR isolates, cull beef cattle were responsible for 38%, and conventional feedlot, grass-fed, and all-natural feedlot cattle were each responsible for 4.8%. These results indicate that different production schemes, season, and climate region may influence which cattle are most likely to introduce Salmonella to the abattoir, allowing for greater risk awareness during the slaughter process.
Collapse
|
22
|
Microbiome Clusters Disclose Physiologic Variances in Dairy Cows Challenged by Calving and Lipopolysaccharides. mSystems 2021; 6:e0085621. [PMID: 34665011 PMCID: PMC8525563 DOI: 10.1128/msystems.00856-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dairy cows respond individually to stressful situations, even under similar feeding and housing conditions. The phenotypic responsiveness might trace back to their microbiome and its interactions with the host. This long-term study investigated the effects of calving, lipopolysaccharide (LPS)-induced inflammation, and l-carnitine supplementation on fecal bacteria and metabolites, dairy cow milk production, health, energy metabolism, and blood metabolites. Fifty-four multiparous Holstein dairy cows were examined over a defined period of life (168 days). The obtained data allowed a holistic analysis combining microbiome data such as 16S rRNA amplicon sequencing and fecal targeted metabolome (188 metabolites) with host parameters. The conducted analyses allowed the definition of three enterotype-like microbiome clusters in dairy cows which could be linked to the community diversity and dynamics over time. The microbiome clusters were discovered to be treatment independent, governed by Bifidobacterium (C-Bifi), unclassified (uncl.) Clostridiales (C-Clos), and unclassified Spirochaetaceae (C-Spiro). Animals between the clusters varied significantly in terms of illnesses, body weight, microbiome composition, and milk and blood parameters. C-Bifi animals were healthier and leaner with a less diverse but dynamic microbiome. C-Spiro animals were heavier, but the diversity of the static microbiome was higher. This pioneering study uncovered microbiome clusters in dairy cows, each contributing differently to animal health and productive performance and with a crucial role of Bifidobacterium. IMPORTANCE The health of dairy cows has to be carefully considered for sustainable and efficient animal production. The microbiome of animals plays an important role in the host's nutrient supply and regulation of immune functions. We show that a certain composition of the fecal microbiome, called microbiome clusters, can be linked to an animal's health at challenging life events such as calving and inflammation. Cows with a specific set of bacteria have coped better under these stressors than have others. This novel information has great potential for implementing microbiome clusters as a trait for sustainable breeding strategies.
Collapse
|
23
|
Xu Q, Qiao Q, Gao Y, Hou J, Hu M, Du Y, Zhao K, Li X. Gut Microbiota and Their Role in Health and Metabolic Disease of Dairy Cow. Front Nutr 2021; 8:701511. [PMID: 34422882 PMCID: PMC8371392 DOI: 10.3389/fnut.2021.701511] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ruminants are mostly herbivorous animals that employ rumen fermentation for the digestion of feed materials, including dairy cows. Ruminants consume plant fibre as their regular diet, but lack the machinery for their digestion. For this reason, ruminants maintain a symbiotic relation with microorganisms that are capable of producing enzymes to degrade plant polymers. Various species of microflora including bacteria, protozoa, fungi, archaea, and bacteriophages are hosted at distinct concentrations for accomplishing complete digestion. The ingested feed is digested at a defined stratum. The polysaccharic plant fibrils are degraded by cellulolytic bacteria, and the substrate formed is acted upon by other bacteria. This sequential degradative mechanism forms the base of complete digestion as well as harvesting energy from the ingested feed. The composition of microbiota readily gets tuned to the changes in the feed habits of the dairy cow. The overall energy production as well as digestion is decided by the intactness of the resident communal flora. Disturbances in the homogeneity gastrointestinal microflora has severe effects on the digestive system and various other organs. This disharmony in communal relationship also causes various metabolic disorders. The dominance of methanogens sometimes lead to bloating, and high sugar feed culminates in ruminal acidosis. Likewise, disruptive microfloral constitution also ignites reticuloperitonitis, ulcers, diarrhoea, etc. The role of symbiotic microflora in the occurrence and progress of a few important metabolic diseases are discussed in this review. Future studies in multiomics provides platform to determine the physiological and phenotypical upgradation of dairy cow for milk production.
Collapse
Affiliation(s)
- Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinqin Qiao
- College of Information Engineering, Fuyang Normal University, Fuyang, China
| | - Ya Gao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Seymour DJ, Sanz-Fernandez MV, Daniel JB, Martín-Tereso J, Doelman J. Effects of supplemental calcium gluconate embedded in a hydrogenated fat matrix on lactation, digestive, and metabolic variables in dairy cattle. J Dairy Sci 2021; 104:7845-7855. [PMID: 33865576 DOI: 10.3168/jds.2020-20003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 11/19/2022]
Abstract
There is growing evidence suggesting that by improving gut integrity and function, less energy is partitioned toward immune responses related to xenobiotic infiltration, sparing energy for productive purposes. Gluconic acid and its salts have previously shown prebiotic effects in the lower gut of nonruminant animals, where they serve as a precursor for butyrate, although evidence in ruminants is limited. Butyrate and its fermentative precursors have demonstrated multiple beneficial effects to gastrointestinal ecology, morphology, and function, such as the stimulation of epithelial cell proliferation and improvement of gut barrier function and ecology. The objective of this study was to evaluate changes in milk production, milk fatty acid composition, and fecal and blood parameters in lactating dairy cattle fed a hydrogenated fat-embedded calcium gluconate (HFCG) supplement designed to target the hindgut for calcium gluconate delivery. In addition, the effects of a compound feed processing method (i.e., incorporated into a mash or an extruded pellet) were tested to evaluate the effect of extrusion on product efficacy. Forty-five lactating Holstein cows at approximately 165 d in milk were used in a 3 × 3 Latin square consisting of three 28-d periods, during which animals were offered a basal ration mixed with 3 different compound feeds: a negative control in mash form containing no HFCG, or the HFCG supplement fed at a target rate of 16 g/d, delivered in either a mash or pelleted form. Supplementation of HFCG tended to increase yields of milk fat and fat- and energy-corrected milk. Total yields and concentrations of milk fatty acids ≥18 carbons in length tended to increase in response to HFCG. Plasma nonesterified fatty acids and milk urea increased in HFCG treatments. No differences were observed in fecal pH or fecal concentrations of volatile fatty acids, with the exception of isobutyrate, which decreased in HFCG-fed cows. Changes in milk fatty acid profile suggest that increased milk fat yield was driven by increased incorporation of preformed fatty acids, supported by increased circulating nonesterified fatty acid. Future research investigating the mode of action of HFCG at the level of the hindgut epithelium is warranted, as measured fecal parameters showed no response to treatment.
Collapse
Affiliation(s)
- D J Seymour
- Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | | | - J B Daniel
- Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Martín-Tereso
- Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - J Doelman
- Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|