1
|
Ferri I, Dell'Anno M, Quiese A, Castiglioni B, Cremonesi P, Biscarini F, Canala B, Santoru M, Colombini A, Ruffo G, Baldi A, Rossi L. Microbiota modulation by the inclusion of Tenebrio molitor larvae as alternative to fermented soy protein concentrate in growing pigs diet. Vet Res Commun 2024; 49:26. [PMID: 39570524 DOI: 10.1007/s11259-024-10588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024]
Abstract
Tenebrio molitor meal represents a promising protein source for animal nutrition due to its low environmental impact and high nutritional value. To date, there is limited data in the literature regarding the effects of Tenebrio molitor meal on the modulation of gut microbiota in growing animals, with most results focusing on poultry rather than pigs. The aim of this study was to evaluate the effects of replacing fermented soy protein concentrate with Tenebrio molitor meal on gut microbiota and feed digestibility in growing pigs. A total of 14 growing pigs (80 ± 2 days old) were randomly allotted to two groups: the control group (CON) was fed a commercial diet containing 4% fermented soy protein concentrate (48% crude protein), and the treatment group (TM) was fed a basal diet containing 5% of T. molitor larvae meal formulated to be isonitrogenous and isoenergetic. The study lasted 28 days. Animals were weekly weighted and feed refuse was routinely measured. Fecal, blood samples, and rectal swabs were collected for analysis. No differences were observed in growth and diet digestibility for the protein and lipid components throughout the trial. No differences in the serum concentrations of albumin, globulin, urea, and interleukin-6 were registered in both groups, suggesting an unaltered health status. The TM group showed a significant difference in the beta diversity index considering the total duration of the trial (treatment effect evaluated with PERMANOVA, R2 0.0771, p value = 0.0099) showing an increased abundance of Elusimicrobium spp. and a decrease in Asteroplasma spp. in TM compared to the CON group (p < 0.05). Obtained findings indicate that 5% T. molitor meal can be included as a partial replacement for soy in growing pig formula without impairing pig growth and gut microbiota composition.
Collapse
Affiliation(s)
- Irene Ferri
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy.
| | - Alessandro Quiese
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 26900, Lodi, Italy
| | - Benedetta Canala
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Matteo Santoru
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Alessia Colombini
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Giancarlo Ruffo
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences- DIVAS, University of Milan, Lodi, 26900, Lodi, Italy
| |
Collapse
|
2
|
Mustafa F, Sajjad A, Tahir R, Ali M, Sajjad M, Abbasi A, Khan EU, Zafar S, Hashem A, Avila-Quezada GD, Abd_Allah EF. Use of Periplaneta americana as a Soybean Meal Substitute: A Step towards Sustainable Transformative Poultry Feeds. INSECTS 2024; 15:632. [PMID: 39336600 PMCID: PMC11432002 DOI: 10.3390/insects15090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Insects are becoming increasingly popular as a sustainable and nutritious alternative protein source in poultry feeds, due to their high protein content, low environmental impact, and efficient feed conversion rates. Using insect-based feeds can reduce the need for traditional protein sources like soybean meal (SBM), which often contribute to environmental issues such as deforestation and high water consumption. The current experiments were devised to assess the impacts of the partial replacement of SBM with the American cockroach Periplaneta americana and black soldier fly Hermetia illucens on the performances, hematology, gut morphometry, and meat quality of male broilers (Ross 308). A total of 350, 1-day-old chicks weighing 40.05 ± 0.27 g were divided into 7 dietary treatments (5 pens/treatment and 10 birds/pen) at random, i.e., a 4, 8, or 12% SMB replacement with P. americana and H. illucens. Soybean meal was used as a basal diet and taken as a control. The results indicated that broilers fed on 12% P. americana or H. illucens showed significant improvements (p < 0.05) in feed conversion ratio, live weight, and daily weight gain. Hematological traits significantly improved (p < 0.05). A gut histology showed increased villus height, villus width, crypt depth, and villus height/crypt depth ratios, indicating improved nutrient absorption. Broiler meat fed on 12% P. americana meal had significantly higher redness and yellowness (p < 0.05). Substituting soybean meal with up to 12% P. americana or H. illucens meal in poultry feed can enhance the broilers' growth performance, hematology, gut morphometry, and meat quality. Hence, these findings imply that P. americana or H. illucens meal are viable and constructive alternative protein sources in poultry nutrition, offering a sustainable approach to meet the increasing demand for animal protein across the world.
Collapse
Affiliation(s)
- Farwa Mustafa
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asif Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Roughaina Tahir
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudssar Ali
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Muhammad Sajjad
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Asim Abbasi
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Saba Zafar
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan 66000, Pakistan
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Colombino E, Gariglio M, Biasato I, Ferrocino I, Pozzo S, Fragola E, Battisti E, Zanet S, Ferroglio E, Capucchio MT, Schiavone A. Insect live larvae as a new nutritional model in duck: effects on gut health. Anim Microbiome 2024; 6:31. [PMID: 38812012 PMCID: PMC11137933 DOI: 10.1186/s42523-024-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of Hermetia illucens (Black soldier fly-BSF) and Tenebrio molitor (Yellow mealworm-YMW) live larvae as a new nutritional model on duck's gut health, considering gut histomorphometry, mucin composition, cytokines transcription levels, and microbiota. A total of 126, 3-days-old, females Muscovy ducks were randomly allotted to three dietary treatments (6 replicates/treatment, 7 birds/pen): (i) C: basal diet; (ii) BSF: C + BSF live larvae; (iii) YMW: C + YMW live larvae. BSF and YMW live larvae were administered on top of the basal diet, based on the 5% of the expected daily feed intake. The live weight, average daily gain, average daily feed intake and feed conversion ratio were evaluated for the whole experimental period. On day 52, 12 ducks/treatment (2 birds/replicate) were slaughtered and samples of duodenum, jejunum, ileum, spleen, liver, thymus and bursa of Fabricius were collected for histomorphometry. Mucin composition was evaluated in the small intestine through histochemical staining while jejunal MUC-2 and cytokines transcription levels were evaluated by rt-qPCR. Cecal microbiota was also analyzed by means of 16 S rRNA gene sequencing. RESULTS Birds' growth performance and histomorphometry were not influenced by diet, with a proximo-distal decreasing gradient from duodenum to ileum (p < 0.001), respecting the physiological gut development. Mucin staining intensity and MUC-2 gene expression did not vary among dietary treatments, even though mucin intensity increased from duodenum to ileum, according to normal gut mucus physiology (p < 0.001). Regarding local immune response, IL-6 was higher in YMW group when compared to the other groups (p = 0.009). Insect live larvae did not affect cecal microbiota diversity, but BSF and YMW groups showed a higher presence of Helicobacter, Elusimicrobium, and Succinatimonas and a lower abundance of Coriobacteriaceae and Phascolarctobacterium compared to C birds (p < 0.05). CONCLUSIONS The use of BSF and YMW live larvae as new nutritional model did not impair gut development and mucin composition of Muscovy ducks, but slightly improved the intestinal immune status and the microbiota composition by enhancing regulatory cytokine IL-6 and by increasing minor Operational Taxonomic Units (OTUs) involved in short-chain fatty acids production.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy.
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Sara Pozzo
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milano, 20133, MI, Italy
| | - Emma Fragola
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Elena Battisti
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
- National Research Council, Institute of Science of Food Production, Grugliasco, 10095, TO, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
- National Research Council, Institute of Science of Food Production, Grugliasco, 10095, TO, Italy
| |
Collapse
|
4
|
Dalmoro YK, Franceschi CH, Stefanello C. A Systematic Review and Metanalysis on the Use of Hermetia illucens and Tenebrio molitor in Diets for Poultry. Vet Sci 2023; 10:702. [PMID: 38133252 PMCID: PMC10747995 DOI: 10.3390/vetsci10120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Insect meal as a protein source has been considered a sustainable way to feed animals. H. illucens and T. molitor larvae meal are considered high-protein sources for poultry, also presenting considerable amounts of fatty acids, vitamins, and minerals. However, other potential components in insect meal and insect oil have been more extensively studied in recent years. Chitin, lauric acid, and antimicrobial peptides can present antimicrobial and prebiotic functions, indicating that low levels of their inclusion in insect meal can beneficially affect broilers' health and immune responses. This systematic review was developed to study the impact of insect products on the health parameters of broilers, and a metanalysis was conducted to evaluate the effects on performance. A database was obtained based on a selection of manuscripts from January 2016 to January 2023, following the mentioned parameters. Both H. illucens and T. molitor meal or oil products had positive effects on poultry health status, especially on the ileal and cecal microbiota population, immune responses, and antimicrobial properties. The average daily gain was greater in broilers fed T. molitor meal compared to H. illucens meal (p = 0.002). The results suggest that low levels of insect meal are suitable for broilers, without resulting in negative effects on body weight gain and the feed conversion ratio, while the insect oil can totally replace soybean oil without negative impacts.
Collapse
Affiliation(s)
- Yuri Katagiri Dalmoro
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Carolina H. Franceschi
- Department of Animal Science, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, RS, Brazil;
| | - Catarina Stefanello
- Department of Animal Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil;
| |
Collapse
|
5
|
Biasato I, Gasco L, Schiavone A, Capucchio MT, Ferrocino I. Gut microbiota changes in insect-fed monogastric species: state-of-the-art and future perspectives. Anim Front 2023; 13:72-80. [PMID: 37583797 PMCID: PMC10425147 DOI: 10.1093/af/vfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
- Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| |
Collapse
|
6
|
Detilleux J, Moula N, Dawans E, Taminiau B, Daube G, Leroy P. A Probabilistic Structural Equation Model to Evaluate Links between Gut Microbiota and Body Weights of Chicken Fed or Not Fed Insect Larvae. BIOLOGY 2022; 11:biology11030357. [PMID: 35336731 PMCID: PMC8945536 DOI: 10.3390/biology11030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Feeding poultry with insects could reduce production costs, but the impact of this diet on their gut microbiota and growth is little known because the network of relationships between their weights, the composition of their microbiota and their diet is complex and potentially biased by confounding factors (such as the gut compartment, age and sex of the birds). In this study, we were able to unravel these relationships in local breed chickens fed or not fed with black soldier fly larvae thanks to a technique of artificial intelligence (the probabilistic structural equation model). Bacteria were grouped into few entities with distinctive metabolic attributes and were probably linked nutritionally. Birds’ age influenced body weights and bacterial composition. The proposed methodology was thus able to simplify the complex dependencies among bacteria present in the gut and to highlight links potentially important in the response of chicken to insect feed. Abstract Feeding chicken with black soldier fly larvae (BSF) may influence their rates of growth via effects on the composition of their gut microbiota. To verify this hypothesis, we aim to evaluate a probabilistic structural equation model because it can unravel the complex web of relationships that exist between the bacteria involved in digestion and evaluate whether these influence bird growth. We followed 90 chickens fed diets supplemented with 0%, 5% or 10% BSF and measured the strength of the relationship between their weight and the relative abundance of bacteria (OTU) present in their cecum or cloaca at 16, 28, 39, 67 or 73 days of age, while adjusting for potential confounding effects of their age and sex. Results showed that OTUs (62 genera) could be combined into ten latent constructs with distinctive metabolic attributes. Links were discovered between these constructs that suggest nutritional relationships. Age directly influenced weights and microbiotal composition, and three constructs indirectly influenced weights via their dependencies on age. The proposed methodology was able to simplify dependencies among OTUs into knowledgeable constructs and to highlight links potentially important to understand the role of insect feed and of microbiota in chicken growth.
Collapse
|
7
|
Colombino E, Biasato I, Ferrocino I, Bellezza Oddon S, Caimi C, Gariglio M, Dabbou S, Caramori M, Battisti E, Zanet S, Ferroglio E, Cocolin L, Gasco L, Schiavone A, Capucchio MT. Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation. Animals (Basel) 2021; 11:2819. [PMID: 34679839 PMCID: PMC8532707 DOI: 10.3390/ani11102819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens (HI) and Tenebrio molitor (TM) live larvae as environmental enrichment on the mucin composition, local immune response and microbiota of broilers. A total of 180 four-day-old male broiler chickens (Ross 308) were randomly allotted to three dietary treatments (six replicates/treatment; ten animals/replicate): (i) control (C); (ii) C+HI; (iii) C+TM. Live larvae were distributed based on 5% of the expected daily feed intake. At slaughter (39 days of age), samples of duodenum, jejunum and ileum (twelve animals/diet) were submitted to mucin histochemical evaluation. Expression of MUC-2 and cytokines was evaluated by rt-qPCR in jejunum. Mucin staining intensity was not influenced by diet (p > 0.05); however, this varied depending on the intestinal segment (p < 0.001). No significant differences were recorded for IL-4, IL-6 TNF-α, MUC-2 and INF-γ gene expression in jejunum, while IL-2 was lower in the TM group compared to HI and C (p = 0.044). Caecal microbiota showed higher abundance of Clostridium, Saccharibacteria and Victivallaceae in the HI group, while Collinsella was higher in the TM group. The results suggested that live insect larvae did not impair mucin composition or local immune response, and can slightly improve caecal microbiota by enhancing a minor fraction of short chain fatty acid-producing taxa.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Sara Bellezza Oddon
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Christian Caimi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, TN, Italy;
| | - Marta Caramori
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Elena Battisti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Luca Cocolin
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Laura Gasco
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
- Institute of Sciences of Food Production, CNR, 10095 Grugliasco, TO, Italy
| |
Collapse
|