1
|
Kovacs EM, Pinard C, Gries R, Manku A, Gries G. Carbon Dioxide, Methane, and Synthetic Cattle Breath Volatiles Attract Host-Seeking Stable Flies, Stomoxys calcitrans. J Chem Ecol 2024; 50:643-653. [PMID: 38806939 DOI: 10.1007/s10886-024-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Stable flies, Stomoxys calcitrans (L.), are blood-feeding ectoparasites of cattle. Host-seeking stable flies respond to various cattle host cues, but a potential role of cattle breath gases [carbon dioxide (CO2), methane (CH4)] and cattle breath volatiles (acetone, isoprene, 2-butanone, 2-propanol, propionic acid, 3-methyl butyric acid, phenol), alone or in combination, on host-seeking behavior of stable flies has not yet been comprehensively investigated. In laboratory and greenhouse experiments, we tested the hypotheses that (1) CO2 and CH4 interactively attract stable flies, (2) CO2 'gates' attraction of stable flies to CH4, and (3) breath volatiles on their own, or in combination with both CO2 and CH4, attract stable flies. In Y-tube olfactometer experiments, the blend of CH4 (0.5%) and CO2 (1%) in breathing air ('b-air') attracted significantly more female flies than CH4, or CO2, in b-air. The flies' responses to CH4 were contingent upon their prior or concurrent exposure to CO2. In two-choice experiments in a large greenhouse compartment, significantly more flies landed on the host-look-alike barrel that disseminated a blend of CO2 and CH4 in b-air (CO2/CH4/b-air) than on the barrel disseminating either b-air or CO2. Moreover, significantly more flies landed on the barrel that disseminated synthetic breath volatiles (SBVs) than on the barrel disseminating b-air. The blend of CO2/CH4/b-air and SBVs elicited more fly landings on barrels than CO2/CH4/b-air but not than SBVs. SBVs, possibly combined with both CH4 and CO2, could be developed as a lure to enhance trap captures of stable flies in livestock production facilities.
Collapse
Affiliation(s)
- Emma M Kovacs
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | - Charlotte Pinard
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Arshpreet Manku
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
2
|
Mazorra-Alonso M, Peralta-Sánchez JM, Heeb P, Jacob S, Martin-Vivaldi M, Martínez-Bueno M, Núñez-Gómez R, Sacristán-Soriano O, Soler JJ. Microbiota and the volatile profile of avian nests are associated with each other and with the intensity of parasitism. FEMS Microbiol Ecol 2024; 100:fiae106. [PMID: 39049462 PMCID: PMC11407443 DOI: 10.1093/femsec/fiae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Bacteria have been suggested as being partially responsible for avian nest odours and, thus, volatiles from their metabolism could influence the intensity of selection pressures due to parasites detecting olfactory cues of their hosts. Here, we tested this hypothesis by exploring intraspecific and interspecific variability in microbial environments, volatile profiles and intensity of ectoparasitism by Carnus hemapterus in the nests of 10 avian species. As expected, we found that (i) alpha and beta diversity of microbial and volatile profiles were associated with each other. Moreover, (ii) alpha diversity of bacteria and volatiles of the nest environment, as well as some particular bacteria and volatiles, was associated with the intensity of parasitism at early and late stages of the nestling period. Finally, (iii) alpha diversity of the nest microbiota, as well as some particular bacteria and volatiles, was correlated with fledging success. When considering them together, the results support the expected links between the microbial environment and nest odours in different bird species, and between the microbial environment and both ectoparasitism intensity and fledging success. Relative abundances of particular volatiles and bacteria predicted ectoparasitism and/or fledging success. Future research should prioritise experimental approaches directed to determine the role of bacteria and volatiles in the outcomes of host-ectoparasite interactions.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120 Almería, Spain
| | | | - Philipp Heeb
- Centre de Recherche en Biodiversité et Ecologie, UMR 5300 Bâtiment 4R1, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, CNRS, UMR 5321 Moulis, France
| | - Manuel Martin-Vivaldi
- Departamento de Zoología, Universidad de Granada, 18071 Granada, Spain
- Unidad asociada (CSIC): Coevolución: cucos, hospedadores y bacterias simbiontes. Universidad de Granada, Spain
| | - Manuel Martínez-Bueno
- Unidad asociada (CSIC): Coevolución: cucos, hospedadores y bacterias simbiontes. Universidad de Granada, Spain
- Departamento de Microbiología, Universidad de Granada, 18071 Granada, Spain
| | - Rafael Núñez-Gómez
- Servicio de Instrumentación Científica, Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | | | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120 Almería, Spain
- Unidad asociada (CSIC): Coevolución: cucos, hospedadores y bacterias simbiontes. Universidad de Granada, Spain
| |
Collapse
|
3
|
Zhu JJ, Wang HJ. Semiochemicals and natural repellents in biting fly management. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101223. [PMID: 38908821 DOI: 10.1016/j.cois.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Biting flies, including stable flies and horn flies, are considered important pests of livestock, companion animals, and humans by inflicting painful bites and interrupting normal animal behavior and human recreational/outdoor activities. It is estimated that they cause an annual loss of over 3 billion dollars in the US livestock industry. Both groups of pest flies further transmit various infectious diseases to animals and humans. The present review summarizes recent research advancements in stable and horn fly chemical and sensory ecology, especially in the discovery of novel attractants and repellents, as well as their controls for these blood-sucking flies and beyond.
Collapse
Affiliation(s)
- Junwei J Zhu
- USDA-ARS Agroecosystem Management Research Unit, Lincoln, NE 68583, USA.
| | - Haichuan J Wang
- USDA-ARS Agroecosystem Management Research Unit, Lincoln, NE 68583, USA
| |
Collapse
|
4
|
Lingeman DG, O'Dell KL, Syed Z. Developing attractants and repellents for ticks: promises and challenges. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101181. [PMID: 38401667 PMCID: PMC11139562 DOI: 10.1016/j.cois.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Historically, some of the most effective tools to counter vector-borne diseases have been those directed against the vectors. Ticks are undergoing a population explosion as evidenced by the recent expansion of their distribution range. Tick control has traditionally relied heavily on pesticides. However, sustained use of acaricides is resulting in resistant tick populations. Multipronged management strategies that build and expand upon innovative control methods are sorely needed. Behavior-modifying chemicals, referred to as semiochemicals, such as pheromones and repellents, offer a first line of personal protection against ticks. We review the current understanding of tick semiochemicals, and how such understanding is leading to the identification of novel chemistries that are effective and safe.
Collapse
Affiliation(s)
- Daniel G Lingeman
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Kenneth L O'Dell
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
5
|
Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors 2024; 17:227. [PMID: 38755646 PMCID: PMC11100076 DOI: 10.1186/s13071-024-06299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.
Collapse
Affiliation(s)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Mazorra-Alonso M, Peralta-Sánchez JM, Martín-Vivaldi M, Martínez-Bueno M, Gómez RN, Soler JJ. Volatiles of symbiotic bacterial origin explain ectoparasitism and fledging success of hoopoes. Anim Microbiome 2024; 6:26. [PMID: 38725090 PMCID: PMC11084096 DOI: 10.1186/s42523-024-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Some parasites use olfactory cues to detect their hosts and, since bacterial symbionts are partially responsible for animal odours, they could influence host parasitism. By autoclaving nest materials of hoopoe (Upupa epops) nests before reproduction started, we explored the hypothetical links between host-associated bacteria, volatiles and parasitism. During the nestling stage, we (i) estimated the level of ectoparasitism by chewing lice (Suborder Mallophaga) in adult hoopoe females and by Carnus haemapterus flies in nestlings, and (ii) characterized microbial communities and volatile profiles of nest environments (nest material and nest cavity, respectively) and uropygial secretions. RESULTS Experimental nests had less diverse bacterial communities and more diverse volatile profiles than control nests, while occupants experienced lower intensity of parasitism in experimental than in control nests. The experiment also affected beta diversity of the microbial communities of nest material and of the volatiles of the nestling uropygial secretions. Moreover, microbial communities of uropygial secretions and of nest materials covaried with their volatile profiles, while the volatile profile of the bird secretions explained nest volatile profile. Finally, a subset of the volatiles and bacteria detected in the nest material and uropygial secretions were associated with the ectoparasitism intensity of both adult females and nestlings, and with fledging success. CONCLUSIONS These results show that a component of animal odours is linked with the microbial communities of the host and its reproductive environment, and emphasize that the associations between bacteria, ectoparasitism and reproductive success are partially mediated by volatiles of bacterial origin. Future work should focus on mechanisms underlying the detected patterns.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain
| | | | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain
| | - Rafael Núñez Gómez
- Servicio de Instrumentación Científica, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes. Universidad de Granada, Granada, Spain.
| |
Collapse
|
7
|
Chakraborty S, Gao S, Allan BF, Smith RL. Effects of cattle on vector-borne disease risk to humans: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011152. [PMID: 38113279 PMCID: PMC10763968 DOI: 10.1371/journal.pntd.0011152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/03/2024] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Vector-borne pathogens (VBPs) causing vector-borne diseases (VBDs) can circulate among humans, domestic animals, and wildlife, with cattle in particular serving as an important source of exposure risk to humans. The close associations between humans and cattle can facilitate the transmission of numerous VBPs, impacting public health and economic security. Published studies demonstrate that cattle can influence human exposure risk positively, negatively, or have no effect. There is a critical need to synthesize the information in the scientific literature on this subject, in order to illuminate the various ecological mechanisms that can affect VBP exposure risk in humans. Therefore, the aim of this systematic review was to review the scientific literature, provide a synthesis of the possible effects of cattle on VBP risk to humans, and propose future directions for research. This study was performed according to the PRISMA 2020 extension guidelines for systematic review. After screening 470 peer-reviewed articles published between 1999-2019 using the databases Web of Science Core Collection, PubMed Central, CABI Global Health, and Google Scholar, and utilizing forward and backward search techniques, we identified 127 papers that met inclusion criteria. Results of the systematic review indicate that cattle can be beneficial or harmful to human health with respect to VBDs depending on vector and pathogen ecology and livestock management practices. Cattle can increase risk of exposure to infections spread by tsetse flies and ticks, followed by sandflies and mosquitoes, through a variety of mechanisms. However, cattle can have a protective effect when the vector prefers to feed on cattle instead of humans and when chemical control measures (e.g., acaricides/insecticides), semio-chemicals, and other integrated vector control measures are utilized in the community. We highlight that further research is needed to determine ways in which these mechanisms may be exploited to reduce VBD risk in humans.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
| | - Siyu Gao
- School of Social Work, The University of Minnesota, Twin Cities, Minnesota, United Sates of America
| | - Brian. F. Allan
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| | - Rebecca Lee Smith
- Program in Ecology, Evolution & Conservation Biology, University of Illinois Urbana-Champaign; Urbana, Illinois, United Sates of America
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United Sates of America
| |
Collapse
|
8
|
Poggi JD, Conery C, Mathewson A, Bolton D, Lovell R, Harrington LC, Notarangelo M. Jamestown Canyon virus (Bunyavirales: Peribunyaviridae) vector ecology in a focus of human transmission in New Hampshire, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:778-788. [PMID: 37071925 DOI: 10.1093/jme/tjad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Jamestown Canyon virus disease (JCVD) is a potentially neuroinvasive condition caused by the arbovirus Jamestown Canyon virus (JCV). Human cases of JCVD have increased in New Hampshire (NH) over the past decade, but vector surveillance is limited by funding and person power. We conducted mosquito surveillance with a focus on human JCVD cases south central NH during 2021. Routine surveillance with CDC miniature traps baited with CO2 (lights removed) was supplemented by a paired trapping design to test the collection efficiency of octenol, and New Jersey light traps. We performed virus testing, blood meal analysis, and compared morphological identification with DNA barcoding. Over 50,000 mosquitoes were collected representing 28 species. Twelve JCV-positive pools were derived from 6 species of more than 1,600 pools tested. Of those, Aedes excrucians/stimulans (MLE 4.95, Diptera: Culicidae, Walker, 1856, 1848), and Aedes sticticus (MLE 2.02, Meigen, 1838) had the highest JCV infection rates, and Aedes canadensis (MLE 0.13, Theobold, 1901) and Coquillettidia perturbans (0.10, Diptera: Culicidae, Walker, 1856) had the lowest infection rates. One hundred and fifty-one blood meals were matched to a vertebrate host. All putative vectors fed on the amplifying host of JCV, white-tailed deer (36-100% of bloodmeals). Putative vectors that fed on human hosts included Aedes excrucians (8%), Anopheles punctipennis (25%, Diptera: Culicidae, Say, 1823), and Coquillettidia perturbans (51%). CDC traps baited with CO2 were effective for collecting putative vectors. DNA barcoding enhanced morphological identifications of damaged specimens. We present the first ecological overview of JCV vectors in NH.
Collapse
Affiliation(s)
- Joseph D Poggi
- Northeast Regional Center for Excellence in Vector Borne Diseases; Cornell University, Department of Entomology, Ithaca, NY 14850, USA
| | - Colin Conery
- Northeast Regional Center for Excellence in Vector Borne Diseases; Cornell University, Department of Entomology, Ithaca, NY 14850, USA
| | - Abigail Mathewson
- New Hampshire Department of Health and Human Services, Concord, NH 03301, USA
| | - Denise Bolton
- New Hampshire Department of Health and Human Services, Concord, NH 03301, USA
| | - Rebecca Lovell
- New Hampshire Department of Health and Human Services, Concord, NH 03301, USA
| | - Laura C Harrington
- Northeast Regional Center for Excellence in Vector Borne Diseases; Cornell University, Department of Entomology, Ithaca, NY 14850, USA
| | - Marco Notarangelo
- New Hampshire Department of Health and Human Services, Concord, NH 03301, USA
| |
Collapse
|
9
|
Long J, Maskell K, Gries R, Nayani S, Gooding C, Gries G. Synergistic attraction of Western black-legged ticks, Ixodes pacificus, to CO 2 and odorant emissions from deer-associated microbes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230084. [PMID: 37206969 PMCID: PMC10189596 DOI: 10.1098/rsos.230084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Foraging ticks reportedly exploit diverse cues to locate their hosts. Here, we tested the hypothesis that host-seeking Western black-legged ticks, Ixodes pacificus, and black-legged ticks, I. scapularis, respond to microbes dwelling in sebaceous gland secretions of white-tailed deer, Odocoileus virginianus, the ticks' preferred host. Using sterile wet cotton swabs, microbes were collected from the pelage of a sedated deer near forehead, preorbital, tarsal, metatarsal and interdigital glands. Swabs were plated on agar, and isolated microbes were identified by 16S rRNA amplicon sequencing. Of 31 microbial isolates tested in still-air olfactometers, 10 microbes induced positive arrestment responses by ticks, whereas 10 others were deterrent. Of the 10 microbes prompting arrestment by ticks, four microbes-including Bacillus aryabhattai (isolates A4)-also attracted ticks in moving-air Y-tube olfactometers. All four of these microbes emitted carbon dioxide and ammonia as well as volatile blends with overlapping blend constituents. The headspace volatile extract (HVE) of B. aryabhattai (HVE-A4) synergistically enhanced the attraction of I. pacificus to CO2. A synthetic blend of HVE-A4 headspace volatiles in combination with CO2 synergistically attracted more ticks than CO2 alone. Future research should aim to develop a least complex host volatile blend that is attractive to diverse tick taxa.
Collapse
Affiliation(s)
- Justin Long
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Keiran Maskell
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Saif Nayani
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Claire Gooding
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
10
|
Masier S, Taudière A, Roy LJM, Carrasco D, Barnagaud JY, Planchon C, Soulié AS, Sleeckx N, Roy L. High-throughput behavioral phenotyping of tiny arthropods: Chemosensory traits in a mesostigmatic hematophagous mite. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:46-62. [PMID: 36052497 PMCID: PMC10087610 DOI: 10.1002/jez.2651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Pest management using attractive and/or repellent semiochemicals is a key alternative to synthetic insecticides. Its implementation requires a good understanding of the intra- and interspecific chemical interactions of arthropod pests, their interactions with their abiotic environment, as well as their evolutionary dynamics. Although mites include many pest species and biocontrol agents of economic importance in agriculture, their chemical ecology is largely understudied compared to insects. We developed a high-throughput ethomics system to analyze these small arthropods and conducted a study on Dermanyssus gallinae, a problematic poultry parasite in the egg industry. Our purpose was to elucidate the role played by host-derived odorants (synthetic kairomone) and conspecific odorants (mite body odors) in D. gallinae. After validating our nanocomputer controlled olfactometric system with volatile semiochemicals of known biological activity, we characterized response traits to kairomonal and/or pheromonal volatile blends in mites from different populations. We were able to accurately characterize the repulsion or attraction behaviors in >1000 individual specimens in a standardized way. Our results confirm the presence of a volatile aggregation pheromone emitted by D. gallinae and bring new elements to the effect of odor source presentation. Our results also confirm the attractive effect on Dermanyssus gallinae of a blend of volatile compounds contained in hen odor, while highlighting a repellent effect at high concentration. Significant interindividual and interpopulation variation was noted particularly in responses to synthetic kairomone. This information lays a valuable foundation for further exploring the emergence risk of resistance to semiochemicals.
Collapse
Affiliation(s)
- Stefano Masier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Adrien Taudière
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | | | - David Carrasco
- MiVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Jean-Yves Barnagaud
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Camille Planchon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Anne-Sophie Soulié
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | | | - Lise Roy
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
11
|
Mireji PO, Mang’era CM, Bwana BK, Hassanali A. Perspectives on Odor-Based Control of Tsetse Flies in Africa. Front Physiol 2022; 13:831618. [PMID: 35250633 PMCID: PMC8896535 DOI: 10.3389/fphys.2022.831618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 11/21/2022] Open
Abstract
Tsetse-transmitted trypanosomiases are among the most neglected tropical diseases in sub-Sahara Africa. Although all tsetse species are susceptible to trypanosome infections, their differential attraction/feeding preferences for different wildlife, domestic animals, and/or humans constitute critical determinants of trypanosomes species they predominantly transmit. Artificial bait technologies, based on long-range tsetse olfactory responses to natural cues emitted by preferred hosts and blends of synthetic versions that mimic these cues, have successfully been applied in attractant-odor-based (“pull” tactic) reduction of field populations of some tsetse species. Olfactory attribute associated with active avoidance of tsetse-refractory non-hosts has similarly been exploited in design of repellent-odor-based (“push” tactic) protection of livestock. These tactics have opened possibility of spatially strategic deployment of the two sets of odor baits in “push-pull” tactics. Possibility of developing blends with enhanced attraction and repellence compared with those associated with savannah tsetse fly hosts and non-hosts, respectively, have been explored, where structure activity and blends of different components generated two novel blends. The studies evaluated structure activity and blends of different components. One based on attractive constituents associated with buffalo (Syncerus caffer) comprised of ε-nonalactone, nonanoic acid, 2-nonanone (in 1:3:2 proportion) delivered together with acetone, which showed significantly better attractancy on savannah tsetse fly than the standard blend comprised of 3-propylphenol, octenol, p-cresol, and acetone (POCA). The other blend comprised of δ-nonalactone, heptanoic acid, 4-methylguaiacol and geranylacetone (in 6:4:2:1 proportion) was significantly more repellent than previously characterized blend based on tsetse fly refractory waterbuck (Kobus defassa) constituents (δ-octalactone, pentanoic acid, guaiacol and geranylacetone). So far, no effective attractants or repellents of riverine tsetse fly species have been characterized. Optimized attractant and repellent blends for savannah tsetse flies lay down useful groundwork for future development of the “push-pull” deployment tactic for area-wide control of tsetse flies. Better understanding of the physiological, cellular, and molecular basis of response in the tsetse fly to odors can potentially augment the current tsetse fly-control interventions.
Collapse
Affiliation(s)
- Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- *Correspondence: Paul O. Mireji,
| | - Clarence M. Mang’era
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
| | - Billiah K. Bwana
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
- Billiah K. Bwana,
| | - Ahmed Hassanali
- Department of Chemistry, School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
12
|
Mazorra-Alonso M, Tomás G, Soler JJ. Microbially Mediated Chemical Ecology of Animals: A Review of Its Role in Conspecific Communication, Parasitism and Predation. BIOLOGY 2021; 10:274. [PMID: 33801728 PMCID: PMC8065758 DOI: 10.3390/biology10040274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts are nowadays considered of pivotal importance for animal life. Among the many processes where microorganisms are involved, an emerging research avenue focuses on their major role in driving the evolution of chemical communication in their hosts. Volatiles of bacterial origin may underlie chemical communication and the transfer of social information through signals, as well as inadvertent social information. We reviewed the role of microorganisms in animal communication between conspecifics, and, because the microbiome may cause beneficial as well as deleterious effects on their animal hosts, we also reviewed its role in determining the outcome of the interactions with parasites and predators. Finally, we paid special attention to the hypothetical role of predation and parasitism in driving the evolution of the animal microbiome. We highlighted the novelty of the theoretical framework derived from considering the microbiota of animals in scenarios of communication, parasitism, and predation. We aimed to encourage research in these areas, suggesting key predictions that need to be tested to better understand what is one of the main roles of bacteria in animal biology.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|