1
|
Yin B, Mao C, Yu F, Li W, Pan R, Feng W, Li Y. A droplet digital PCR method for the detection of scale drop disease virus in yellowfin seabream ( Acanthopagrus latus). Front Microbiol 2024; 15:1444235. [PMID: 39386365 PMCID: PMC11461249 DOI: 10.3389/fmicb.2024.1444235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, a ddPCR method for the detection of scale drop disease virus (SDDV) in yellowfin seabream (Acanthopagrus latus) was established based on Real-time fluorescence quantitative PCR detection methods and principles. The reaction conditions were optimized, and the sensitivity, specificity, accuracy, and reproducibility were assessed. The results showed that threshold line position was determined to be 1900 by the ddPCR method; the optimum annealing temperature for SDDV detection by the ddPCR method was 60°C; the limit of detection was 1.4-1.7 copies/μL; the results of specific detection of other common viruses, except for SDDV specific amplification, were all negative; and the relative standard deviation (RSD) for the reproducibility validation was 0.77%. The samples of yellowfin seabream (Acanthopagrus latus) liver, spleen, kidney, heart, intestine, brain, blood, muscle, skin and ascites with three replicates, respectively, were tested using the ddPCR method, and the results were consistent with clinical findings. The ddPCR method established in this study has the advantages of high sensitivity, high specificity, good reproducibility and simple steps for the quantitative detection of SDDV, which could be used for the nucleic acid detection of clinical SDDV samples, and provided a new quantitative method for the diagnosis of yellowfin seabream SDDV in the early stage of pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| |
Collapse
|
2
|
Çelik A, Çakar D, Derviş S, Morca AF, Akıllı Şimşek S, Romon-Ochoa P, Özer G. New Detection Methods for Cryphonectria Hypovirus 1 (CHV1) through SYBR Green-Based Real-Time PCR and Loop-Mediated Isothermal Amplification (LAMP). Viruses 2024; 16:1203. [PMID: 39205177 PMCID: PMC11360611 DOI: 10.3390/v16081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Some mycoviruses can be considered as effective biocontrol agents, mitigating the impact of phytopathogenic fungi and consequently reducing disease outbreaks while promoting plant health. Cryphonectria parasitica, the causal agent of chestnut blight and a highly destructive pathogen, experienced a notable decrease in its virulence with the identification of cryphonectria hypovirus 1 (CHV1), a naturally occurring biocontrol agent. In this study, two innovative diagnostic protocols designed for the accurate and efficient detection of CHV1 are introduced. The ORF A and ORF B regions of CHV1 are targeted by these techniques, which employ colorimetric loop-mediated isothermal amplification (LAMP) with 2 Colorimetric LAMP Master Mix and real-time quantitative PCR (qPCR) with SYBR Green chemistry, respectively. The LAMP assay presents a discernible color transition, changing from pink to yellow after a 35 min incubation period. Comparative analysis, when assessed against two established reverse transcription-PCR (RT-PCR) techniques, reveals a significant enhancement in sensitivity for both the LAMP approach, which offers a tenfold increase, and the qPCR method, which showcases a remarkable 100-fold sensitivity improvement. Throughout the comparison phase, it was evident that the RT-PCR, LAMP, and qPCR procedures displayed superior performance compared to the Bavendamm test, relying on phenol oxidase activity, effectively distinguishing hypovirulent strains. Consequently, this study introduces two pioneer diagnostic assays for highly sensitive CHV1 detection, representing a substantial advancement in the realm of CHV1 surveillance techniques. These methodologies hold significant promise for enhancing research endeavors in the domain of the biological control of C. parasitica.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Deniz Çakar
- Central Research Laboratory Application and Research Center, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Sibel Derviş
- Department of Plant Protection, Faculty of Kızıltepe Agricultural Sciences and Technologies, Mardin Artuklu University, Mardin 47000, Türkiye
- Department of Plant and Animal Production, Vocational School of Kızıltepe, Mardin Artuklu University, Mardin 47000, Türkiye
| | - Ali Ferhan Morca
- Directorate of Plant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv., Yenimahalle, Ankara 06172, Türkiye
| | - Seçil Akıllı Şimşek
- Department of Biology, Faculty of Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye
| | - Pedro Romon-Ochoa
- Forest Research, Plant Pathology Department, Alice Holt Research Station, Farnham GU10 4LH, UK
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| |
Collapse
|
3
|
Kim GH, Jeong YJ, Jeon YG, Yang YJ, Min JG, Kim DH, Il Kim K. Diagnostic performance of cross-priming amplification-based lateral flow assay (CPA-LFA) and real-time PCR for koi herpesvirus (KHV) detection. J Virol Methods 2024; 325:114890. [PMID: 38309371 DOI: 10.1016/j.jviromet.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Epizootics of Koi herpesvirus (KHV) cause mass mortality in koi carp (Cyprinus rubrofuscus) and common carp (Cyprinus carpio) worldwide. Rapid and accurate virus detection technology is crucial for preventing pathogen spread and minimizing damage. Although several diagnostic assays have been developed for KHV, the analytical and diagnostic performance of the detection methods has not been evaluated. In this study, we developed and validated the diagnostic performance of two molecular diagnostic assays, cross-priming amplification-based lateral flow assay (CPA-LFA) and TaqMan probe-based real-time polymerase chain reaction (PCR). To detect KHV, primers and probe were designed based on the thymidine kinase (TK) genes. The detection limits of developed CPA-LFA and real-time PCR assays were determined to be 675.69 copies/μL and 8.384 copies/μL, respectively. The diagnostic sensitivity and specificity of the developed assay were determined using fish samples (n = 179). CPA-LFA was found to be 93.67% and 100%, respectively, and real-time PCR was found to be 100% and 100%, respectively. Therefore, the newly developed CPA-LFA and real-time PCR assays accurately and rapidly detect KHV. CPA-LFA is particularly suitable for point-of-care diagnosis because of its simple diagnostic process, and real-time PCR analysis is most suitable for precise diagnosis because it can detect low viral loads.
Collapse
Affiliation(s)
- Guk Hyun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Ye Jin Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yu Gyeong Jeon
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Yun Jung Yang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Joon Gyu Min
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea
| | - Kwang Il Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Vázquez-Salgado L, Olveira JG, Dopazo CP, Bandín I. Detection of different Betanodavirus genotypes in wild fish from Spanish Atlantic coastal waters (Galicia, northwestern Spain). JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:57-69. [PMID: 37787030 DOI: 10.1002/aah.10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE The nervous necrosis virus (NNV; genus Betanodavirus) is an aquatic pathogen that is responsible for a neurological disease affecting marine fish. Despite its almost worldwide distribution, global warming could favor the spread of NNV to new areas, highlighting the importance of conducting epidemiological surveys on both wild and farmed marine fish species. In this study, we assessed NNV prevalence in wild fish caught along the Galician Atlantic coast. METHODS In total, 1277 fish were analyzed by reverse transcription real-time polymerase chain reaction. RESULT Twenty two (1.72%) of those fish tested positive for NNV, including two species in which the pathogen had not yet been reported. CONCLUSION The reassortant RGNNV/SJNNV (red-spotted grouper NNV/striped jack NNV) was detected in 55% of NNV-positive individuals, while the remaining 45% harbored the SJNNV-type genome. Moreover, from European Pilchard Sardina pilchardus and Atlantic Mackerel Scomber scombrus, we isolated four reassortant strains that carried amino acid mutations at key sites related to NNV-host interaction.
Collapse
Affiliation(s)
- Lucía Vázquez-Salgado
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José G Olveira
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos P Dopazo
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Bandín
- Instituto de Acuicultura, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Souto S, Olveira JG, López-Vázquez C, Bandín I, Dopazo CP. Designing and Validation of a Droplet Digital PCR Procedure for Diagnosis and Accurate Quantification of Nervous Necrosis Virus in the Mediterranean Area. Pathogens 2023; 12:1155. [PMID: 37764963 PMCID: PMC10536565 DOI: 10.3390/pathogens12091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The viral nervous necrosis virus (VNNV) is the causative agent of an important disease affecting fish species cultured worldwide. Early and accurate diagnosis is, at present, the most effective control and prevention tool, and molecular techniques have been strongly introduced and accepted by official organizations. Among those, real-time quantitative polymerase chain reaction (rt-qPCR) is nowadays displacing other molecular techniques. However, another PCR-based technology, droplet digital PCR (ddPCR), is on the increase. It has many advantages over qPCR, such as higher sensitivity and more reliability of the quantification. Therefore, we decided to design and validate a protocol for the diagnosis and quantification of SJ and RG type VNNV using reverse transcription-ddPCR (RT-ddPCR). We obtained an extremely low limit of detection, 10- to 100-fold lower than with RT-qPCR. Quantification by RT-ddPCR, with a dynamic range of 6.8-6.8 × 104 (SJ type) or 1.04 × 101-1.04 × 105 (RG type) cps/rctn, was more reliable than with RT-qPCR. The procedure was tested and validated in field samples, providing high clinical sensitivity and negative predictive values. In conclusion, we propose this method to substitute RT-qPCR protocols because it exceeds the expectations of qPCR in the diagnosis and quantification of VNNV.
Collapse
Affiliation(s)
| | | | | | | | - Carlos P. Dopazo
- Instituto de Acuicultura, Department of Microbiology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (J.G.O.); (C.L.-V.); (I.B.)
| |
Collapse
|
6
|
Souto S, Mérour E, Le Coupanec A, Lamoureux A, Bernard J, Brémont M, Millet JK, Biacchesi S. Recombinant viral hemorrhagic septicemia virus with rearranged genomes as vaccine vectors to protect against lethal betanodavirus infection. Front Immunol 2023; 14:1138961. [PMID: 36999033 PMCID: PMC10043230 DOI: 10.3389/fimmu.2023.1138961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
The outbreaks of viral hemorrhagic septicemia (VHS) and viral encephalopathy and retinopathy (VER) caused by the enveloped novirhabdovirus VHSV, and the non-enveloped betanodavirus nervous necrosis virus (NNV), respectively, represent two of the main viral infectious threats for aquaculture worldwide. Non-segmented negative-strand RNA viruses such as VHSV are subject to a transcription gradient dictated by the order of the genes in their genomes. With the goal of developing a bivalent vaccine against VHSV and NNV infection, the genome of VHSV has been engineered to modify the gene order and to introduce an expression cassette encoding the major protective antigen domain of NNV capsid protein. The NNV Linker-P specific domain was duplicated and fused to the signal peptide (SP) and the transmembrane domain (TM) derived from novirhabdovirus glycoprotein to obtain expression of antigen at the surface of infected cells and its incorporation into viral particles. By reverse genetics, eight recombinant VHSVs (rVHSV), termed NxGyCz according to the respective positions of the genes encoding the nucleoprotein (N) and glycoprotein (G) as well as the expression cassette (C) along the genome, have been successfully recovered. All rVHSVs have been fully characterized in vitro for NNV epitope expression in fish cells and incorporation into VHSV virions. Safety, immunogenicity and protective efficacy of rVHSVs has been tested in vivo in trout (Oncorhynchus mykiss) and sole (Solea senegalensis). Following bath immersion administration of the various rVHSVs to juvenile trout, some of the rVHSVs were attenuated and protective against a lethal VHSV challenge. Results indicate that rVHSV N2G1C4 is safe and protective against VHSV challenge in trout. In parallel, juvenile sole were injected with rVHSVs and challenged with NNV. The rVHSV N2G1C4 is also safe, immunogenic and efficiently protects sole against a lethal NNV challenge, thus presenting a promising starting point for the development of a bivalent live attenuated vaccine candidate for the protection of these two commercially valuable fish species against two major diseases in aquaculture.
Collapse
Affiliation(s)
- Sandra Souto
- Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Stéphane Biacchesi, ; Sandra Souto,
| | - Emilie Mérour
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Alain Le Coupanec
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annie Lamoureux
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Julie Bernard
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Michel Brémont
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Stéphane Biacchesi
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
- *Correspondence: Stéphane Biacchesi, ; Sandra Souto,
| |
Collapse
|
7
|
Çelik A, Emiralioğlu O, Yeken MZ, Çiftçi V, Özer G, Kim Y, Baloch FS, Chung YS. A novel study on bean common mosaic virus accumulation shows disease resistance at the initial stage of infection in Phaseolus vulgaris. Front Genet 2023; 14:1136794. [PMID: 37021006 PMCID: PMC10067576 DOI: 10.3389/fgene.2023.1136794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Accurate and early diagnosis of bean common mosaic virus (BCMV) in Phaseolus vulgaris tissues is critical since the pathogen can spread easily and have long-term detrimental effects on bean production. The use of resistant varieties is a key factor in the management activities of BCMV. The study reported here describes the development and application of a novel SYBR Green-based quantitative real-time PCR (qRT-PCR) assay targeting the coat protein gene to determine the host sensitivity to the specific NL-4 strain of BCMV. The technique showed high specificity, validated by melting curve analysis, without cross-reaction. Further, the symptoms development of twenty advanced common bean genotypes after mechanical BCMV-NL-4 infection was evaluated and compared. The results showed that common bean genotypes exhibit varying levels of host susceptibility to this BCMV strain. The YLV-14 and BRS-22 genotypes were determined as the most resistant and susceptible genotypes, respectively, in terms of aggressiveness of symptoms. The accumulation of BCMV was analyzed in the resistant and susceptible genotypes 3, 6, and 9 days following the inoculation by the newly developed qRT-PCR. The mean cycle threshold (Ct) values showed that the viral titer was significantly lower in YLV-14, which was evident in both root and leaf 3 days after the inoculation. The qRT-PCR thus facilitated an accurate, specific, and feasible assessment of BCMV accumulation in bean tissues even in low virus titers, allowing novel clues in selecting resistant genotypes in the early stages of infection, which is critical for disease management. To the best of our knowledge, this is the first study of a successfully performed qRT-PCR to estimate BCMV quantification.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Orkun Emiralioğlu
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Yoonha Kim
- Laboratory of Crop Production, Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| |
Collapse
|
8
|
Nervous Necrosis Virus (NNV) Booster Vaccination Increases Senegalese Sole Survival and Enhances Immunoprotection. Animals (Basel) 2022; 13:ani13010051. [PMID: 36611661 PMCID: PMC9817516 DOI: 10.3390/ani13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
A re-immunization programme has been tested to improve the protective response elicited in sole by a previously developed BEI-inactivated betanodavirus vaccine. The vaccine was prepared using a reassortant RGNNV/SJNNV strain which is highly pathogenic for sole, and vaccination assays were performed by intraperitoneal injection. Experimental design included a prime- and a booster-vaccination group, which consisted of individuals that received a second vaccine injection at 30 days post vaccination), and their respective controls. A month after prime/booster vaccination, fish were challenged by intramuscular injection with the homologous NNV strain. Samples were collected at different times post vaccination and post challenge to assess the immune response and viral replication. Booster dose enhanced the protection against NNV infection because a significant increase in survival was recorded when compared with prime-vaccinated individuals (relative percent survival 77 vs. 55). In addition, a clear decrease in viral replication in the brain of challenged sole was observed. During the immune induction period, no differences in IgM production were observed between prime- and booster-vaccinated fish, and the expression of the antigen presenting cells (APC)-related molecule MHC class II antigen was the only differential stimulation recorded in the re-immunized individuals. However, a significant upregulation of mhcII and the lymphocytes T helper (Th) marker cd4 was observed after the challenge in the booster-vaccinated group, suggesting these cells play a role in the protection conferred by the booster injection. In addition, after viral infection, re-immunized fish showed specific and neutralizing antibody production and overexpression of other immune-related genes putatively involved in the control of NNV replication.
Collapse
|
9
|
Characterization of Nervous Necrosis Virus (NNV) Nonstructural Protein B2 and Its Enhancement on Virus Proliferation. Viruses 2022; 14:v14122818. [PMID: 36560822 PMCID: PMC9786564 DOI: 10.3390/v14122818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The nerve necrosis virus (NNV), a pathogen of viral nervous necrosis disease in several important mariculture economic fish species, causes economic loss. Its nonstructural protein B2 encoded by the sub-genomic RNA3 affects the amplification of the virus. In this study, the B2 protein was recombinantly expressed, the polyclonal antibodies were produced and the dynamics of the B2 protein and genomes were measured in vivo and in vitro after NNV infection. Then, the effects of the overexpressed B2 protein on virus proliferation were investigated. The results showed that the polyclonal antibodies can recognize the B2 protein in both SSN-1 cells and the brain/eye of the grouper. The RNA3 expression significantly increased at 12 h and kept rising till the end of the experiment; it was 106.9 copies/μL at 120 h. The B2 protein could be first detected at 3 h post-infection, which was earlier than the capsid protein was first detected (12 h post-infection). The B2 protein can be detected in the brain, eye and heart on day 3 and the copy number of genomes reached a maximum at 6 d post-infection. There was a low expression of NNV genomes in the liver, spleen and kidney, and no virus was detected in the gill, stomach and intestine. In the meantime, the B2 protein was successfully expressed in GF-1 cells and significantly enhanced virus proliferation, which produced an earlier cytopathic effect and higher cell death rates after 3 d post-infection than the control. In conclusion, the B2 protein acts as an early expressed protein during virus replication and proliferation and is involved in the early infection of NNV. The results may provide insight into the early stage of virus infection and prevention of the disease.
Collapse
|
10
|
Differential Nervous Necrosis Virus (NNV) Replication in Five Putative Susceptible Cell Lines. Pathogens 2021; 10:pathogens10121565. [PMID: 34959520 PMCID: PMC8708063 DOI: 10.3390/pathogens10121565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Viral encephalopathy and retinopathy caused by nervous necrosis virus (NNV), is one of the most threatening viral diseases affecting marine fish worldwide. In vitro propagation of NNV strains is essential for the design of effective control measures. In the present study we analysed both the susceptibility and the permissiveness of five fish cell lines (E-11, GF-1, SAF-1, DLB-1, and SaB-1) to three NNV strains (one RGNNV, one SJNNV, and one reassortant RGNNV/SJNNV). E-11 and DLB-1 were demonstrated to be highly susceptible to NNV strains, with average adsorption efficiency (AE) values higher than 90%. SAF-1 also showed high susceptibility (AE 88%), whereas GF-1 can be regarded as moderately susceptible (AE around 50%). On the contrary, SaB-1 can be considered a poorly susceptible cell line (AE values below 20%). E-11 and GF-1 cell lines provided the highest production rates for RGNNV and RG/SJ (around 103) and both cell lines can be regarded as fully permissive for these viral types. However, the SJNNV production rate in GF-1 was only 17.8 and therefore this cell line should be considered semi-permissive for this genotype. In SAF-1 cells, moderate viral replication was recorded but differences in intracellular and extracellular production suggest that viral progeny was not efficiently released. In DLB-1 and SaB-1 the final viral titres obtained in E-11 were lower than those of the inoculum. However, RNA1 synthesis values seem to indicate that RGNNV replication in DLB-1 and SAF-1 could have been underestimated, probably due to a poor adaptation of the virus grown in these cell lines to E-11. Based on all these results, E-11 seems to be the most appropriate cell for in vitro culture of RGNNV, SJNNV, and reassortant strains.
Collapse
|