1
|
Patinho I, Antonelo DS, Delgado EF, Alessandroni L, Balieiro JCC, Contreras Castillo CJ, Gagaoua M. In-depth exploration of the high and normal pH beef proteome: First insights emphasizing the dynamic protein changes in Longissimus thoracis muscle from pasture-finished Nellore bulls over different postmortem times. Meat Sci 2024; 216:109557. [PMID: 38852285 DOI: 10.1016/j.meatsci.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
This study aimed to evaluate for the first time the temporal dynamic changes in early postmortem proteome of normal and high ultimate pH (pHu) beef samples from the same cattle using a shotgun proteomics approach. Ten selected carcasses classified as normal (pHu < 5.8; n = 5) or high (pHu ≥ 6.2; n = 5) pHu beef from pasture-finished Nellore (Bos taurus indicus) bulls were sampled from Longissimus thoracis muscle at 30 min, 9 h and 44 h postmortem for proteome comparison. The temporal proteomics profiling quantified 863 proteins, from which 251 were differentially abundant (DAPs) between high and normal pHu at 30 min (n = 33), 9 h (n = 181) and 44 h (n = 37). Among the myriad interconnected pathways regulating pH decline during postmortem metabolism, this study revealed the pivotal role of energy metabolism, cellular response to stress, oxidoreductase activity and muscle system process pathways throughout the early postmortem. Twenty-three proteins overlap among postmortem times and may be suggested as candidate biomarkers to the dark-cutting condition development. The study further evidenced for the first time the central role of ribosomal proteins and histones in the first minutes after animal bleeding. Moreover, this study revealed the disparity in the mechanisms underpinning the development of dark-cutting beef condition among postmortem times, emphasizing multiple dynamic changes in the muscle proteome. Therefore, this study revealed important insights regarding the temporal dynamic changes that occur in early postmortem of high and normal muscle pHu beef, proposing specific pathways to determine the biological mechanisms behind dark-cutting determination.
Collapse
Affiliation(s)
- Iliani Patinho
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Daniel S Antonelo
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Eduardo F Delgado
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | - Laura Alessandroni
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino 62032, Italy
| | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, SP 13635-900, Brazil
| | - Carmen J Contreras Castillo
- Department of Agri-food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, SP 13418-900, Brazil
| | | |
Collapse
|
2
|
Erasmus SW, Sohaib M, Revilla I, Vivar-Quintana AM, Giancoli SJ. Markers for meat provenance and authenticity with an account of its defining factors and quality characteristics - a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7027-7084. [PMID: 38545907 DOI: 10.1002/jsfa.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024]
Abstract
Provenance is becoming increasingly important in meat supply chains as it lends products higher perceived quality. However, its precise definition and interpretation along with its associated characteristics factors have remained somewhat elusive. This review meticulously defines meat provenance while dissecting the essential factors and associated quality attributes that constitute its essence and are subsequently employed to establish pertinent markers for provenance. Meat provenance emerges as a multi-dimensional construct stemming from the adept management of a constellation of factors relating to geographical origin, farm production system, traceability, and authenticity. Through intricate interactions, these factors unveil innate originality that not only forges a distinct reputation but also imparts a unique typicity to the meat product. Gaining insights into a meat product's provenance becomes attainable by scrutinizing its pertinent composition and organoleptic quality traits. Trace elements and stable isotopes stand out as provenance markers, forging a direct connection to both geographical origin and dietary sources. While somewhat less direct in linkage, other markers such as plant biomarkers, fatty acid composition, pH levels, flavour and aromatic compounds along with organoleptic characteristics contribute to the overall understanding of provenance. Additionally, the identification of animal species and breeds serves as key markers, particularly in the context of protected geographical indications. The study findings are useful for the various stakeholders of how the information for meat provenance can be linked with intrinsic and extrinsic factors for meat quality and protecting the integrity of the supply chain with special reference to traceability and authenticity. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Muhammad Sohaib
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Isabel Revilla
- Food Technology Area, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Zamora, Spain
| | - Ana María Vivar-Quintana
- Food Technology Area, Universidad de Salamanca, Escuela Politécnica Superior de Zamora, Zamora, Spain
| | | |
Collapse
|
3
|
de Vitt MG, do Nascimento AL, Brunetto ALR, Piaia AM, Giocomelli CM, Xavier AC, Wagner R, Martins CS, Kozloski GV, Da Silva AS. Use of Cracker Residue in the Diet of Dairy Heifers: Impacts on Animal Health, Ruminal Fatty Acids Profile, Digestibility, Weight Gain, and Economic Viability. Animals (Basel) 2024; 14:1325. [PMID: 38731329 PMCID: PMC11083051 DOI: 10.3390/ani14091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study determined whether the isomeric or isoenergetic/isoproteic substitution of corn in the diet of Jersey heifers in the rearing phase with cracker residue would impair growth and health, as well as reducing production costs. Fourteen Jersey females in the growth phase were used, separated into two treatments with seven animals in each lot in collective pens. The experiment used 7-month-old animals (169.8 ± 2.89 kg) and lasted for four months. In Experiment I, the animals were divided into two groups: treatment, with the partial replacement of 40% corn with cracker residue, and control, in which the animals consumed the same diet with 100% corn (isometric diet kg for kg). In Experiment II, the animals with a body weight of 200.2 ± 3.85 kg were divided into two groups: Treatment, replacing 100% of the corn with cracker residue, and control, in which the animals consumed an isoprotein and isoenergetic diet but with 100% of the corn in the formulation. The diet consisted of concentrate, Tifton 85 hay, and corn silage, supplied twice a day individually, with animals contained in their feeders by kennels. There was water ad libitum in the bay. Biweekly weighing and monthly blood analysis were performed, totaling four collections per part for hematologic evaluation, carbohydrate, lipid, and protein metabolism variables. At the end of each experiment, ruminal fluid was collected to measure the volatile fatty acid profile, and feces were collected to determine the apparent digestibility coefficient (ADC). Experiments I and II showed no effect of treatment on body weight, weight gain, average daily weight gain, feed intake, and feed efficiency. There was no effect of treatment on leukocyte, erythrocyte, lymphocyte, neutrophil, monocyte, and eosinophil counts, hematocrit, and hemoglobin concentration (p > 0.05). Experiment I showed a difference between groups for the variables albumin, globulin, total proteins, cholesterol, glucose, and urea, which did not happen in Experiment II. In both experiments, a higher ADC of nutrients was found in the treatment group which had cracker residue (p > 0.05). The concentration of volatile fatty acids in Experiment I was higher in the control group, unlike in Experiment II, where the highest concentration was in the treatment group (p > 0.05). Because experiment I had an isometric substitution, the diets had different bromatological composition, which is the probable cause of the difference between groups; this did not happen in experiment II, in which the diets consumed by the animals was isoproteic and isoenergetic. Based on these data we conclude that the substitution of cracker residue in an isomeric or isoenergetic/isoproteic form does not negatively affect weight gain and animal health, as well as reduces the cost of the concentrate, consequently reducing the cost of production of these animals.
Collapse
Affiliation(s)
- Maksuel Gatto de Vitt
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil; (M.G.d.V.); (A.L.d.N.); (A.L.R.B.); (C.M.G.)
| | - Aline Luiza do Nascimento
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil; (M.G.d.V.); (A.L.d.N.); (A.L.R.B.); (C.M.G.)
| | - Andrei Lucas Rebelatto Brunetto
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil; (M.G.d.V.); (A.L.d.N.); (A.L.R.B.); (C.M.G.)
| | - Arthur Mocelin Piaia
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil;
| | - Charles Marcon Giocomelli
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil; (M.G.d.V.); (A.L.d.N.); (A.L.R.B.); (C.M.G.)
| | - Ana Carolina Xavier
- Graduate Program in Food Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (A.C.X.); (R.W.)
| | - Roger Wagner
- Graduate Program in Food Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (A.C.X.); (R.W.)
| | - Camila Soares Martins
- Department in Animal Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (C.S.M.); (G.V.K.)
| | - Gilberto Vilmar Kozloski
- Department in Animal Science, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil; (C.S.M.); (G.V.K.)
| | - Aleksandro Schafer Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil; (M.G.d.V.); (A.L.d.N.); (A.L.R.B.); (C.M.G.)
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-000, SC, Brazil;
| |
Collapse
|
4
|
Kumar P, Ahmed MA, Abubakar AA, Hayat MN, Kaka U, Ajat M, Goh YM, Sazili AQ. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci 2023; 197:109048. [PMID: 36469986 DOI: 10.1016/j.meatsci.2022.109048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Stress induces various physiological and biochemical alterations in the animal body, which are used to assess the stress status of animals. Blood profiles, serum hormones, enzymes, and physiological conditions such as body temperature, heart, and breathing rate of animals are the most commonly used stress biomarkers in the livestock sector. Previous exposure, genetics, stress adaptation, intensity, duration, and rearing practices result in wide intra- and inter-animal variations in the expression of various stress biomarkers. The use of meat proteomics by adequately analyzing the expression of various muscle proteins such as heat shock proteins (HSPs), acute phase proteins (APPs), texture, and tenderness biomarkers help predict meat quality and stress in animals before slaughter. Thus, there is a need to identify non-invasive, rapid, and accurate stress biomarkers that can objectively assess stress in animals. The present manuscript critically reviews various aspects of stress biomarkers in animals and their application in mitigating preslaughter stress in meat production.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abubakar Ahmed Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Ataallahi M, Nejad JG, Park KH. Selection of appropriate biomatrices for studies of chronic stress in animals: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:621-639. [PMID: 35969712 PMCID: PMC9353350 DOI: 10.5187/jast.2022.e38] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Cortisol and corticosterone, hormones traditionally considered biomarkers of stress, can be measured in fluid biomatrices (e.g., blood, saliva) from live animals to evaluate conditions at sampling time, or in solid biomatrices (e.g., hair, feather) from live or dead animals to obtain information regarding long-term changes. Using these biomarkers to evaluate physiological stress responses in domestic animals may be challenging due to the diverse characteristics of biomatrices for potential measurement. Ideally, a single measurement from the biomatrix should be sufficient for evaluating chronic stress. The availability of appropriate and cost-effective immunoassay methods for detecting the biomarkers should also be considered. This review discusses the strengths and limitations of different biomatrices with regard to ensuring the highest possible reliability for chronic stress evaluation. Overall, solid biomatrices require less frequent sampling than other biomatrices, resulting in greater time- and cost-effectiveness, greater ease of use, and fewer errors. The multiplex immunoassay can be used to analyze interactions and correlations between cortisol and other stress biomarkers in the same biomatrix. In light of the lack of information regarding appropriate biomatrices for measuring chronic stress, this review may help investigators set experimental conditions or design biological research.
Collapse
Affiliation(s)
- Mohammad Ataallahi
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and
Technology, Sanghuh College of Life Sciences, Konkuk
University, Seoul 05029, Korea
| | - Kyu-Hyun Park
- Department of Animal Industry Convergence,
Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
6
|
Sierra V, González-Blanco L, Diñeiro Y, Díaz F, García-Espina MJ, Coto-Montes A, Gagaoua M, Oliván M. New Insights on the Impact of Cattle Handling on Post-Mortem Myofibrillar Muscle Proteome and Meat Tenderization. Foods 2021; 10:3115. [PMID: 34945666 PMCID: PMC8700955 DOI: 10.3390/foods10123115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
This study investigated the effect of different cattle management strategies at farm (Intensive vs. Extensive) and during transport and lairage (mixing vs. non-mixing with unfamiliar animals) on the myofibrillar subproteome of Longissimus thoracis et lumborum (LTL) muscle of "Asturiana de los Valles" yearling bulls. It further aimed to study the relationships with beef quality traits including pH, color, and tenderness evaluated by Warner-Bratzler shear force (WBSF). Thus, comparative proteomics of the myofibrillar fraction along meat maturation (from 2 h to 14 days post-mortem) and different quality traits were analyzed. A total of 23 protein fragments corresponding to 21 unique proteins showed significant differences among the treatments (p < 0.05) due to any of the factors considered (Farm, Transport and Lairage, and post-mortem time ageing). The proteins belong to several biological pathways including three structural proteins (MYBPC2, TNNT3, and MYL1) and one metabolic enzyme (ALDOA) that were affected by both Farm and Transport/Lairage factors. ACTA1, LDB3, and FHL2 were affected by Farm factors, while TNNI2 and MYLPF (structural proteins), PKM (metabolic enzyme), and HSPB1 (small Heat shock protein) were affected by Transport/Lairage factors. Several correlations were found between the changing proteins (PKM, ALDOA, TNNI2, TNNT3, ACTA1, MYL1, and CRYAB) and color and tenderness beef quality traits, indicating their importance in the determination of meat quality and their possible use as putative biomarkers.
Collapse
Affiliation(s)
- Verónica Sierra
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Laura González-Blanco
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Yolanda Diñeiro
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| | - Fernando Díaz
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - María Josefa García-Espina
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
| | - Ana Coto-Montes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Dublin 15, D15 KN3K Ashtown, Ireland
| | - Mamen Oliván
- Área de Sistemas de Producción Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Ctra. AS-267, PK 19, 33300 Villaviciosa, Spain; (V.S.); (L.G.-B.); (Y.D.); (F.D.); (M.J.G.-E.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain;
| |
Collapse
|
7
|
Beňo F, Škorpilová T, Pohůnek V, Bauer J, Ševčík R. Comparison of the Automatic and Manual Broiler Pre-Slaughter Chain Based on Trailer Microclimate during Transportation and Its Effect on m. pectoralis major. Animals (Basel) 2021; 11:ani11102946. [PMID: 34679968 PMCID: PMC8532892 DOI: 10.3390/ani11102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Improper pre-slaughter catching, loading/unloading, handling, and transport may cause negative effects on the welfare and meat quality of poultry. During the catch process, noisy, rough, or aggressive techniques can cause birds to panic, which can lead to injuries and lower meat quality. Fractures, joint dislocations, and bruises can be common and cause bird suffering, mortality, carcass degradation, and economic loss. Proper pre-slaughter processes can ensure the safety of poultry and workers. One way to prevent these problems is to use automatic catching machines (harvesters/chicken cat), handling machines (shuttles), and air-conditioned trucks (trailers) to collect and handle poultry. Microclimate in trailers is another important factor influencing welfare. Internal overheating may cause high mortality of the animals during transport and reduced meat quality. The use of modern air-conditioned trailers results in improved welfare conditions, reduced mortality and the incidence of injuries and fractures, and increased meat quality. Abstract This study aims to compare two broiler pre-slaughter chain methods: (i) the automatic pre-slaughter chain (APC) and (ii) manual pre-slaughter chain (MPC). The comparison is based on the evaluation of the trailer microclimate, number of injuries, and breast muscle (m. pectoralis major) quality. Transportation lasts 3.5 h, unloading 1 h. The selection of two hundred 39-day-old broilers (Ross 308 and Cobb 500 breeds) is random for each type of method. After slaughter, the pH value, electrical conductivity (EC), and color (lightness) of breast muscle tissues are determined at different post-mortem intervals. The MPC negatively affects the microclimate (p < 0.001), meat qualitative characteristics (p < 0.001), and places a greater strain on the body of chickens compared with APC. The average pH15min value of MPC broiler breast muscle tissue, generally used as the main meat quality parameter, is 5.97 ± 0.12, in contrast to 6.36 ± 0.16 for APC. Higher pH15min value of APC indicates better welfare and pre-slaughter handling. Values of EC and L* of breast tissues also confirms a difference between the methods of broiler handling (p < 0.001). No difference is found between the breed lines (p > 0.05).
Collapse
Affiliation(s)
- Filip Beňo
- Correspondence: ; Tel.: +420-220-44-3198
| | | | | | | | | |
Collapse
|
8
|
Mota-Rojas D, Napolitano F, Strappini A, Orihuela A, Martínez-Burnes J, Hernández-Ávalos I, Mora-Medina P, Velarde A. Quality of Death in Fighting Bulls during Bullfights: Neurobiology and Physiological Responses. Animals (Basel) 2021; 11:2820. [PMID: 34679841 PMCID: PMC8532837 DOI: 10.3390/ani11102820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
During bullfights, bulls undergo physiometabolic responses such as glycolysis, anaerobic reactions, cellular oedema, splenic contraction, and hypovolemic shock. The objective of this review article is to present the current knowledge on the factors that cause stress in fighting bulls during bullfights, including their dying process, by discussing the neurobiology and their physiological responses. The literature shows that biochemical imbalances occur during bullfights, including hypercalcaemia, hypermagnesaemia, hyperphosphataemia, hyperlactataemia, and hyperglycaemia, associated with increased endogenous cortisol and catecholamine levels. Creatine kinase, citrate synthase, and lactate dehydrogenase levels also increase, coupled with decreases in pH, blood bicarbonate levels, excess base, partial oxygen pressure, and oxygen saturation. The intense exercise also causes a marked decrease of glycogen in type I and II muscle fibres that can produce myoglobinuria and muscular necrosis. Other observations suggest the presence of osteochondrosis. The existing information allows us to conclude that during bullfights, bulls face energy and metabolic demands due to the high intensity and duration of the exercise performed, together with muscular injuries, physiological changes, and high enzyme concentrations. In addition, the final stage of the bullfight causes a slow dying process for an animal that is sentient and conscious of its surroundings.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università Degli Studi Della Basilicata, 85100 Potenza, Italy;
| | - Ana Strappini
- Animal Science Institute, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Faculty of Veterinary Medicine, Universidad Autónoma de Tamaulipas, Ciudad Victoria 87000, Mexico;
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), State of Mexico 54714, Mexico; (I.H.-Á.); (P.M.-M.)
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), State of Mexico 54714, Mexico; (I.H.-Á.); (P.M.-M.)
| | - Antonio Velarde
- IRTA, Animal Welfare Program, Veinat Sies S-N, 17121 Monells, Spain;
| |
Collapse
|