1
|
Cuccato M, Divari S, Ciaramita S, Sereno A, Campelli D, Biolatti PG, Biolatti B, Meliota F, Bollo E, Cannizzo FT. Actinobacillus pleuropneumoniae Serotypes by Multiplex PCR Identification and Evaluation of Lung Lesions in Pigs from Piedmont (Italy) Farms. Animals (Basel) 2024; 14:2255. [PMID: 39123782 PMCID: PMC11311043 DOI: 10.3390/ani14152255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Porcine pleuropneumonia (PPP) is one of the main causes leading to massive losses in the pig industry, with high economic impacts. Among different etiological agents, Actinobacillus pleuropneumoniae (APP) is responsible for severe fibrinous-necrotizing pleuropneumonia. A total of 19 different APP serotypes are currently recognized. This study aimed to identify APP serotypes isolated from pneumonic lesions in naturally infected and dead pigs in the Piedmont Region and to describe lesions. A total of 107 dead pigs with a suspected PPP diagnosis were included in this study. Lungs were evaluated using gross-pathology scoring systems, histopathology, and APP isolation and serotypes identification by multiplex PCR were conducted. Gross lung lesions were mainly represented by fibrinous pneumonia and pleuropneumonia. APP was isolated in 20/107 (18.7%) samples. PCR indicated APP DNA presence in 53/107 (49.5%) of lung samples. The most observed serotypes were serotype 2 in 24/53 (45.3%) and serotype 6 in 13/53 (24.5%) samples. Moreover, multiplex PCR results suggested a coinfection of different serotypes in five samples. This study emphasizes the importance of an integrated approach, utilizing various techniques, such as gross- and histopathology, and bacteriological culture and PCR, to enhance the diagnosis of APP infections.
Collapse
Affiliation(s)
- Matteo Cuccato
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Sara Divari
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Silvia Ciaramita
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Alessandra Sereno
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | | | | | | | | | - Enrico Bollo
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| | - Francesca Tiziana Cannizzo
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy; (M.C.); (S.D.); (S.C.); (A.S.)
| |
Collapse
|
2
|
Huang Q, Li W, Jing X, Liu C, Ahmad S, Huang L, Zhao G, Li Z, Qiu Z, Xin R. Naringin's Alleviation of the Inflammatory Response Caused by Actinobacillus pleuropneumoniae by Downregulating the NF-κB/NLRP3 Signalling Pathway. Int J Mol Sci 2024; 25:1027. [PMID: 38256101 PMCID: PMC10816821 DOI: 10.3390/ijms25021027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is responsible for causing Porcine pleuropneumonia (PCP) in pigs. However, using vaccines and antibiotics to prevent and control this disease has become more difficult due to increased bacterial resistance and weak cross-immunity between different APP types. Naringin (NAR), a dihydroflavonoid found in citrus fruit peels, has been recognized as having significant therapeutic effects on inflammatory diseases of the respiratory system. In this study, we investigated the effects of NAR on the inflammatory response caused by APP through both in vivo and in vitro models. The results showed that NAR reduced the number of neutrophils (NEs) in the bronchoalveolar lavage fluid (BALF), and decreased lung injury and the expression of proteins related to the NLRP3 inflammasome after exposure to APP. In addition, NAR inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in porcine alveolar macrophage (PAMs), reduced protein expression of NLRP3 and Caspase-1, and reduced the secretion of pro-inflammatory cytokines induced by APP. Furthermore, NAR prevented the assembly of the NLRP3 inflammasome complex by reducing protein interaction between NLRP3, Caspase-1, and ASC. NAR also inhibited the potassium (K+) efflux induced by APP. Overall, these findings suggest that NAR can effectively reduce the lung inflammation caused by APP by inhibiting the over-activated NF-κB/NLRP3 signalling pathway, providing a basis for further exploration of NAR as a potential natural product for preventing and treating APP.
Collapse
Affiliation(s)
- Qilin Huang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Wei Li
- Lanzhou Center for Disease Control and Prevention, Lanzhou 730050, China;
| | - Xiaohan Jing
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Chen Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Saad Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Lina Huang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, Lanzhou University, Lanzhou 730013, China;
| | - Guanyu Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Zhaorong Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Zhengying Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| | - Ruihua Xin
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, China; (Q.H.); (X.J.); (C.L.); (S.A.); (G.Z.); (Z.L.)
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of China, Lanzhou 730050, China
| |
Collapse
|
3
|
Puspitarani GA, Fuchs R, Fuchs K, Ladinig A, Desvars-Larrive A. Network analysis of pig movement data as an epidemiological tool: an Austrian case study. Sci Rep 2023; 13:9623. [PMID: 37316653 PMCID: PMC10267221 DOI: 10.1038/s41598-023-36596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Animal movements represent a major risk for the spread of infectious diseases in the domestic swine population. In this study, we adopted methods from social network analysis to explore pig trades in Austria. We used a dataset of daily records of swine movements covering the period 2015-2021. We analyzed the topology of the network and its structural changes over time, including seasonal and long-term variations in the pig production activities. Finally, we studied the temporal dynamics of the network community structure. Our findings show that the Austrian pig production was dominated by small-sized farms while spatial farm density was heterogeneous. The network exhibited a scale-free topology but was very sparse, suggesting a moderate impact of infectious disease outbreaks. However, two regions (Upper Austria and Styria) may present a higher structural vulnerability. The network also showed very high assortativity between holdings from the same federal state. Dynamic community detection revealed a stable behavior of the clusters. Yet trade communities did not correspond to sub-national administrative divisions and may be an alternative zoning approach to managing infectious diseases. Knowledge about the topology, contact patterns, and temporal dynamics of the pig trade network can support optimized risk-based disease control and surveillance strategies.
Collapse
Affiliation(s)
- Gavrila A Puspitarani
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
- Complexity Science Hub Vienna, Josefstaedter Strasse 39, 1080, Vienna, Austria.
| | - Reinhard Fuchs
- Department for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Zinzendorfgasse 27/1, 8010, Graz, Austria
- Institute of Systems Sciences, Innovation and Sustainability Research, University of Graz, Merangasse 18/1, 8010, Graz, Austria
| | - Klemens Fuchs
- Department for Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety (AGES), Zinzendorfgasse 27/1, 8010, Graz, Austria
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Amélie Desvars-Larrive
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
- Complexity Science Hub Vienna, Josefstaedter Strasse 39, 1080, Vienna, Austria
- VetFarm, University of Veterinary Medicine Vienna, Kremesberg 13, 2563, Pottenstein, Austria
| |
Collapse
|
4
|
Petri FAM, Ferreira GC, Arruda LP, Malcher CS, Storino GY, Almeida HMDS, Sonalio K, Silva DGD, Oliveira LGD. Associations between Pleurisy and the Main Bacterial Pathogens of the Porcine Respiratory Diseases Complex (PRDC). Animals (Basel) 2023; 13:ani13091493. [PMID: 37174529 PMCID: PMC10177087 DOI: 10.3390/ani13091493] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/02/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Porcine Respiratory Diseases Complex (PRDC) is a multifactorial disease that involves several bacterial pathogens, including Mycoplasma hyopneumoniae (M. hyopneumoniae), Actinobacillus pleuropneumoniae (A. pleuropneumoniae), Pasteurella multocida (P. multocida), Glaesserella parasuis (G. parasuis), and Streptococcus suis (S. suis). In pigs, the infection may cause lesions such pleurisy, which can lead to carcass condemnation. Hence, 1015 carcasses were selected from three different commercial pig farms, where the respiratory conditions were evaluated using slaughterhouse pleurisy evaluation system (SPES) and classified into five groups. In total, 106 pleural and lung fragments were collected for qPCR testing to identify the five abovementioned pathogens. A moderate correlation between the severity of the lesions and the presence of P. multocida (R = 0.38) and A. pleuropneumoniae (R = 0.28) was observed. Concerning the lung samples, the severity of the lesions was moderately correlated with the presence of P. multocida (R = 0.43) and M. hyopneumoniae (R = 0.35). Moreover, there was a strong correlation between the presence of P. multocida and M.hyopneumoniae in the pleura (R = 0.82). Finally, this approach may be a useful tool to identify and quantify causative agents of PRDC using qPCR, providing a comprehensive evaluation of its relevance, strength, and potential application in the field as a surveillance tool for veterinarians.
Collapse
Affiliation(s)
| | - Geovana Coelho Ferreira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Laíza Pinto Arruda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Clarisse Sena Malcher
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Gabriel Yuri Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | | | - Karina Sonalio
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Daniela Gomes da Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
5
|
Clinical Efficacy of Two Novel, Differentially Administered (IM, ID) Vaccines against Mycoplasma hyopneumoniae and PCV2 in Swine under Field Conditions. Animals (Basel) 2022; 12:ani12243467. [PMID: 36552387 PMCID: PMC9774315 DOI: 10.3390/ani12243467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Enzootic pneumonia (EP) of pigs is caused by Mycoplasma hyopneumoniae (M.hp.), which is, together with the porcine circovirus type 2 (PCV2), among the most prominent inducers of the porcine respiratory disease complex (PRDC). Therefore, vaccination of piglets against M.hp. and PCV2 is crucial in the fight against pulmonary infections. In this field study, we tested the clinical efficacy of two novel vaccines, one delivered IM (Hyogen® + Circovac®) and the other ID (MHyo-Sphere®PCV ID), on a fattening farm in Lower Austria with a history of still ongoing EP. Average daily weight gain, coughing/sneezing index, losses due to morbidity/mortality, and lung scoring data at slaughter by means of CLP (Ceva Lung Program) were recorded for three consecutive fattening cohorts to achieve a powerful number of animals, one half each vaccinated with the IM vaccine and the other half with the ID vaccine (n = 659 in total). No statistically significant differences could be observed between the two vaccination groups for the parameters investigated, but the total median EP score, which categorizes pulmonary lesions due to infection by M.hp. with a theoretical range of 0-28, was lowered from initially 1.9 to 1.0, indicating that both vaccines proved very suitable measures in the fight against EP.
Collapse
|
6
|
Comparative Efficacy in Challenge Dose Models of a Toxin Expressing Whole-Cell Vaccine against Eight Serovars of Actinobacillus pleuropneumoniae in Pigs. Animals (Basel) 2022; 12:ani12233244. [PMID: 36496765 PMCID: PMC9740876 DOI: 10.3390/ani12233244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a major economically significant bacterial respiratory pig pathogen, and whole cell vaccines are used to prevent disease. However, there is little data available on multi-serovar whole cell vaccine protection. Therefore, we determined the protective efficacies of a whole-cell A. pleuropneumoniae serovar 1 and 2 vaccine comprising ApxI-III toxins (C-vaccine, Coglapix®, Ceva, France) against serovars 1, 2, 4, 5, 6, 7, 9/11, and 13. The infection doses used induced disease representative of endemic field conditions, and standard protocols were used for all studies. Protection against homologous serovars 1 and 2 significantly reduced lung lesion scores (LLS) compared to positive controls: p = 0.00007 and p = 0.00124, respectively. The protection against heterologous serovars 4, 5, 6, 7, 9/11, and 13 also significantly reduced LLS: range p = 2.9 × 10-10 to p = 0.00953. As adjudged by the estimated random effect, reproducibility between studies was high. A highly significant serovar-independent reduction of pathological lung lesions by the C-vaccine was found for all the serovars tested (1, 2, 4, 5, 6, 7, 9/11, and 13). We conclude that the C-vaccine gives high serovar-independent protection against disease and is suitable for this use in the field.
Collapse
|
7
|
Scherrer S, Peterhans S, Neupert C, Rademacher F, Bartolomei G, Sidler X, Stephan R. Development of a novel high resolution melting assay for identification and differentiation of all known 19 serovars of
Actinobacillus pleuropneumoniae. Microbiologyopen 2022; 11:e1272. [PMID: 35478285 PMCID: PMC8924696 DOI: 10.1002/mbo3.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory infectious disease responsible for global economic losses in the pig industry. From a monitoring perspective as well as due to the different courses of disease associated with the various serovars, it is essential to distinguish them in different herds or countries. In this study, we developed a novel high resolution melting (HRM) assay based on reference strains for each of the 19 known serovars and additional 15 clinical A. pleuropneumoniae isolates. The novel HRM comprises the species‐specific APP‐HRM1 and two serovar‐specific HRM assays (APP‐HRM2 and APP‐HRM3). APP‐HRM1 allowed polymerase chain reaction (PCR) amplification of apxIV resulting in an A. pleuropneumoniae specific melting curve, while nadV specific primers differentiated biovar 2 from biovar 1 isolates. Using APP‐HRM2 and APP‐HRM3, 13 A. pleuropneumoniae serovars can be determined by inspecting the assigned melting temperature. In contrast, serovar 3 and 14, serovar 9 and 11, and serovar 5 and 15 have partly overlapping melting temperatures and thus represent a challenge to accurately distinguish them. Consequently, to unambiguously ensure the correct assignment of the serovar, it is recommended to perform the serotyping HRM assay using a positive control for each serovar. This rapid and user‐friendly assay showed high sensitivity with 1.25 fg–125 pg of input DNA and a specificity of 100% to identify A. pleuropneumoniae. Characteristic melting patterns of amplicons might allow detecting new serovars. The novel HRM assay has the potential to be implemented in diagnostic laboratories for better surveillance of this pathogen.
Collapse
Affiliation(s)
- Simone Scherrer
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Sophie Peterhans
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, Vetsuisse Faculty University of Zurich Zurich Switzerland
| | | | - Fenja Rademacher
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, Vetsuisse Faculty University of Zurich Zurich Switzerland
| | | | - Xaver Sidler
- Department of Farm Animals, Division of Swine Medicine, Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, Vetsuisse Faculty University of Zurich Zurich Switzerland
| |
Collapse
|