1
|
Cope HR, McArthur C, Gray R, Newsome TM, Dickman CR, Sriram A, Haering R, Herbert CA. Trends in Rescue and Rehabilitation of Marsupials Surviving the Australian 2019-2020 Bushfires. Animals (Basel) 2024; 14:1019. [PMID: 38612258 PMCID: PMC11011103 DOI: 10.3390/ani14071019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The 2019-2020 Australian bushfire season had a devastating impact on native wildlife. It was estimated that 3 billion native animals were impacted by the fires, yet there are few estimates of the number of animals that were rescued and rehabilitated post-fire. Focusing on the state of New South Wales (NSW) and Kangaroo Island, South Australia, we used a case study approach to determine the number of marsupials that were reported rescued due to the 2019-2020 bushfires in these areas and analysed species-specific trends in rescue and release success. In NSW, we found 889 reports of fire-affected marsupials in 2019-2020, mostly comprising kangaroos and wallabies (macropods; n = 458), koalas (n = 204), and possums (n = 162), with a smaller number of wombats (n = 43) and other marsupial species. Most reports of fire-affected marsupials occurred 6-8 weeks after fire ignition, and there was no difference in temporal frequency of rescues between marsupial groups. For the three main groups, the probability of survival and subsequent release differed, with macropods having the lowest probability of release after rescue (0.15 ± 0.04) compared to koalas (0.47 ± 0.04) and possums (0.55 ± 0.10). The type of injury was the main predictor of survival during rehabilitation for all three marsupial groups, with those malnourished/moribund or with traumatic injuries less likely to survive rehabilitation. Death or euthanasia occurred on the day of rescue for 77% of macropods, 48% of possums and 15% of koalas. Koalas most often died during rehabilitation rather than on the day of rescue, with 73% either dying or being euthanised between day 1 and 30 post-rescue, representing a potential welfare concern. On Kangaroo Island, koalas were the most frequently rescued marsupial species; most euthanasia cases and deaths occurred in a hospital, whereas other marsupials were mostly euthanised at triage. In both jurisdictions, koalas were over-represented while possums were under-represented relative to baseline population densities and wildlife rescue trends in the years before the 2019-2020 bushfires. These species differences in presentation post-fire warrant further investigation, as do the differences in triage, survival and release outcomes. It is hypothesised that the high intensity and large scale of the 2019-2020 fires impeded marsupial fire evasion tactics, as evidenced by the small number of animals found for rescue, and the differing rates of presentation relative to underlying population densities for the main marsupial groups. Based on our findings, there is a need for detailed record keeping and data sharing, development of consistent and evidence-based triage, treatment and euthanasia guidelines and deployment of trained wildlife emergency rescue teams with advanced search techniques to minimise animal suffering where safe to do so.
Collapse
Affiliation(s)
- Holly R. Cope
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (H.R.C.); (R.G.)
| | - Clare McArthur
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.); (T.M.N.); (C.R.D.)
| | - Rachael Gray
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (H.R.C.); (R.G.)
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.); (T.M.N.); (C.R.D.)
| | - Christopher R. Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.); (T.M.N.); (C.R.D.)
| | - Aditi Sriram
- New South Wales Department of Climate Change, Energy the Environment and Water, National Parks and Wildlife Service, Parramatta, NSW 2150, Australia
| | - Ron Haering
- New South Wales Department of Climate Change, Energy the Environment and Water, National Parks and Wildlife Service, Parramatta, NSW 2150, Australia
| | - Catherine A. Herbert
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.); (T.M.N.); (C.R.D.)
| |
Collapse
|
2
|
McDougall FK, Speight N, Funnell O, Boardman WSJ, Power ML. Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. MICROBIAL ECOLOGY 2024; 87:39. [PMID: 38332161 PMCID: PMC10853082 DOI: 10.1007/s00248-024-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Fiona K McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA, 5001, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Michelle L Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
McDougall FK, Boardman WS, Speight N, Stephenson T, Funnell O, Smith I, Graham PL, Power ML. Carriage of antibiotic resistance genes to treatments for chlamydial disease in koalas ( Phascolarctos cinereus): A comparison of occurrence before and during catastrophic wildfires. One Health 2023; 17:100652. [PMID: 38024267 PMCID: PMC10665209 DOI: 10.1016/j.onehlt.2023.100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Growing reports of diverse antibiotic resistance genes in wildlife species around the world symbolises the extent of this global One Health issue. The health of wildlife is threatened by antimicrobial resistance in situations where wildlife species develop disease and require antibiotics. Chlamydial disease is a key threat for koalas in Australia, with infected koalas frequently entering wildlife hospitals and requiring antibiotic therapy, typically with chloramphenicol or doxycycline. This study investigated the occurrence and diversity of target chloramphenicol and doxycycline resistance genes (cat and tet respectively) in koala urogenital and faecal microbiomes. DNA was extracted from 394 urogenital swabs and 91 faecal swabs collected from koalas in mainland Australia and on Kangaroo Island (KI) located 14 km off the mainland, before (n = 145) and during (n = 340) the 2019-2020 wildfires. PCR screening and DNA sequencing determined 9.9% of samples (95%CI: 7.5% to 12.9%) carried cat and/or tet genes, with the highest frequency in fire-affected KI koalas (16.8%) and the lowest in wild KI koalas sampled prior to fires (6.5%). The diversity of cat and tet was greater in fire-affected koalas (seven variants detected), compared to pre-fire koalas (two variants detected). Fire-affected koalas in care that received antibiotics had a significantly higher proportion (p < 0.05) of cat and/or tet genes (37.5%) compared to koalas that did not receive antibiotics (9.8%). Of the cat and/or tet positive mainland koalas, 50.0% were Chlamydia-positive by qPCR test. Chloramphenicol and doxycycline resistance genes in koala microbiomes may contribute to negative treatment outcomes for koalas receiving anti-chlamydial antibiotics. Thus a secondary outcome of wildfires is increased risk of acquisition of cat and tet genes in fire-affected koalas that enter care, potentially exacerbating the already significant threat of chlamydial disease on Australia's koalas. This study highlights the importance of considering impacts to wildlife health within the One Health approach to AMR and identifies a need for greater understanding of AMR ecology in wildlife.
Collapse
Affiliation(s)
- Fiona K. McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Wayne S.J. Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Tamsyn Stephenson
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Ian Smith
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia
- Zoos South Australia, Frome Rd, Adelaide, SA 5001, Australia
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Michelle L. Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Baek C, Woolford L, Funnell O, McLelland J, Eddy S, Stephenson T, Speight N. Cutaneous and Respiratory Lesions in Bushfire-Affected Koalas. Vet Sci 2023; 10:658. [PMID: 37999482 PMCID: PMC10675647 DOI: 10.3390/vetsci10110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
In the wake of increasingly frequent bushfires emerging as a threat to wildlife worldwide, koalas have notably been the most rescued species in Australia. However, our understanding of burns and their severity in koalas is limited; hence, this study investigated the histopathological features and depth of burns in koala skin, as well as the presence of smoke-induced respiratory tract damage. In four bushfire-affected koalas that had been euthanised on welfare grounds, skin burns in various body regions were scored based on clinical appearance as superficial, partial thickness, or full thickness. Histological sections of affected regions of skin were assessed as Grades I-IV and showed that furred regions on the ear margins and dorsum were histologically more severe, at Grade III, compared with the clinical score. There was a similar finding for footpad burns, which were the most common body region affected. In the respiratory tract, pulmonary oedema and congestion were evident in all koalas. Overall, the results highlight that cutaneous burn lesions on furred and palmar/plantar surfaces can have higher severity based on the burn depth than is clinically apparent. Therefore, there is a need to consider this when developing treatment plans and establishing prognosis for burnt koalas at triage, as well as that a high likelihood of pulmonary oedema exists.
Collapse
Affiliation(s)
- Chloe Baek
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia (L.W.); (T.S.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia (L.W.); (T.S.)
| | - Oliver Funnell
- Zoos South Australia, Frome Rd., Adelaide, SA 5000, Australia; (O.F.); (J.M.)
| | - Jennifer McLelland
- Zoos South Australia, Frome Rd., Adelaide, SA 5000, Australia; (O.F.); (J.M.)
| | - Stuart Eddy
- The Austin Vet Specialists, Adelaide, SA 5031, Australia;
| | - Tamsyn Stephenson
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia (L.W.); (T.S.)
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA 5371, Australia (L.W.); (T.S.)
| |
Collapse
|
5
|
Lane MR, Lowe A, Vukcevic J, Clark RG, Madani G, Higgins DP, Silver L, Belov K, Hogg CJ, Marsh KJ. Health Assessments of Koalas after Wildfire: A Temporal Comparison of Rehabilitated and Non-Rescued Resident Individuals. Animals (Basel) 2023; 13:2863. [PMID: 37760263 PMCID: PMC10525633 DOI: 10.3390/ani13182863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Many koalas (Phascolarctos cinereus) required rehabilitation after the 2019/20 Australian megafires. Little is known about how the post-release health of rehabilitated koalas compares to non-rescued resident koalas. We evaluated health parameters in rehabilitated koalas and resident koalas in burnt and unburnt habitat in southern New South Wales, Australia. Health checks were undertaken within six weeks of fire (rehabilitated group), 5-9 months post-fire and 12-16 months post-fire. Body condition improved significantly over time in rehabilitated koalas, with similar condition between all groups at 12-16 months. Rehabilitated koalas therefore gained body condition at similar rates to koalas who remained and survived in the wild. The prevalence of Chlamydia pecorum was also similar between groups and timepoints, suggesting wildfire and rehabilitation did not exacerbate disease in this population. While there was some variation in measured serum biochemistry and haematology parameters between groups and timepoints, most were within normal reference ranges. Our findings show that koalas were generally healthy at the time of release and when recaptured nine months later. Landscapes in the Monaro region exhibiting a mosaic of burn severity can support koalas, and rehabilitated koala health is not compromised by returning them to burnt habitats 4-6 months post-fire.
Collapse
Affiliation(s)
- Murraya R. Lane
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| | - Arianne Lowe
- Stromlo Veterinary Services, P.O. Box 3963, Weston, ACT 2611, Australia;
| | | | - Robert G. Clark
- Research School of Finance, Actuarial Studies and Statistics, The Australian National University, Canberra, ACT 2601, Australia;
| | - George Madani
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (L.S.); (K.B.); (C.J.H.)
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (L.S.); (K.B.); (C.J.H.)
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (L.S.); (K.B.); (C.J.H.)
| | - Karen J. Marsh
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
6
|
Beaman JE, Mulligan C, Moore C, Mitchell D, Narayan E, Burke da Silva K. Resident wild koalas show resilience to large-scale translocation of bushfire-rescued koalas. CONSERVATION PHYSIOLOGY 2023; 11:coac088. [PMID: 36726864 PMCID: PMC9885738 DOI: 10.1093/conphys/coac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Wildlife translocation is increasingly utilized as a conservation management action, to mitigate the immediate negative effects of habitat loss and fragmentation (e.g. from land clearing or bushfires). Previous research has shown that stress responses can help or hinder survival in translocated wildlife and determine the efficacy of translocation as a conservation action. Yet these translocated animals are only one side of the equation, with translocation also potentially impacting the animals in the recipient population. We measured physiological markers of stress (faecal cortisol metabolite concentrations and neutrophil-lymphocyte ratios) and assessed health condition in a wild koala population one year after a major translocation of bushfire-rescued koalas on Kangaroo Island. We expected to find a high population density at the site (>0.75 koalas per hectare) and that resident koalas would show signs of chronic stress and ill health as a result of territorial conflict over food trees and reproductive opportunities. In contrast, we found that only one-fifth of the population remaining at the site were translocated koalas. The overall population density was also much lower (0.21 koalas per hectare) than anticipated. With no evidence of mass mortality at the site, we suggest that the majority of translocated koalas dispersed away from the site. Our stress marker measurements did not differ between the wild koalas and a sample of captive (non-display) koalas at the nearby Kangaroo Island Wildlife Park and were generally low compared to other studies. Veterinary examinations found that most koalas were in good body condition with very few diagnostic indicators of systemic ill health. Overall, our results suggest that, if there is adequate landscape-scale habitat connectivity and opportunity for dispersal, translocated koalas are likely to disperse from the site of release, with limited impacts on recipient koala populations at translocation release sites.
Collapse
Affiliation(s)
- Julian E Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| | - Connor Mulligan
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| | - Claire Moore
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| | - Dana Mitchell
- Kangaroo Island Wildlife Park, 4068 Playford Hwy, Duncan, South Australia 5223
- Kangaroo Island Koala & Wildlife Rescue Centre, 4068 Playford Hwy, Duncan, South Australia 5223
| | - Edward Narayan
- School of Agriculture and Food Sciences, The University of Queensland, Lawes, Queensland 4343
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042
| |
Collapse
|
7
|
Pocknee CA, Legge SM, McDonald J, Fisher DO. Modeling mammal response to fire based on species' traits. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023:e14062. [PMID: 36704894 DOI: 10.1111/cobi.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Fire has shaped ecological communities worldwide for millennia, but impacts of fire on individual species are often poorly understood. We performed a meta-analysis to predict which traits, habitat, or study variables and fire characteristics affect how mammal species respond to fire. We modeled effect sizes of measures of population abundance or occupancy as a function of various combinations of these traits and variables with phylogenetic least squares regression. Nine of 115 modeled species (7.83%) returned statistically significant effect sizes, suggesting most mammals are resilient to fire. The top-ranked model predicted a negative impact of fire on species with lower reproductive rates, regardless of fire type (estimate = -0.68), a positive impact of burrowing in prescribed fires (estimate = 1.46) but not wildfires, and a positive impact of average fire return interval for wildfires (estimate = 0.93) but not prescribed fires. If a species' International Union for Conservation of Nature Red List assessment includes fire as a known or possible threat, the species was predicted to respond negatively to wildfire relative to prescribed fire (estimate = -2.84). These findings provide evidence of experts' abilities to predict whether fire is a threat to a mammal species and the ability of managers to meet the needs of fire-threatened species through prescribed fire. Where empirical data are lacking, our methods provide a basis for predicting mammal responses to fire and thus can guide conservation actions or interventions in species or communities.
Collapse
Affiliation(s)
- Christopher A Pocknee
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Sarah M Legge
- Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Queensland, Australia
- Fenner School of Environment & Society, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jane McDonald
- Institute for Future Environments, Centre for the Environment, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Diana O Fisher
- School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Speight N. Health and Diseases of Koalas. Animals (Basel) 2022; 12:ani12081005. [PMID: 35454251 PMCID: PMC9027410 DOI: 10.3390/ani12081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
The koala (Phascolarctos cinereus) is an arboreal marsupial that is found throughout much of eastern and southeastern Australia, and it relies primarily on eucalypt trees for food, water and shelter [...]
Collapse
Affiliation(s)
- Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Roseworthy Campus, University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|