1
|
Khan MZ, Chen W, Naz S, Liu X, Liang H, Chen Y, Kou X, Liu Y, Ashraf I, Han Y, Peng Y, Wang C, Zahoor M. Determinant genetic markers of semen quality in livestock. Front Endocrinol (Lausanne) 2024; 15:1456305. [PMID: 39429738 PMCID: PMC11489916 DOI: 10.3389/fendo.2024.1456305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024] Open
Abstract
The reproductive efficiency of livestock is crucial for agricultural productivity and economic sustainability. One critical factor in successful fertilization and the viability of offspring is the quality of semen. Poor semen quality, especially in frozen-thawed semen used in artificial insemination (AI) have been shown to influence conception outcomes, resulting a negative impact on livestock production. Recent advancements in genetic research have identified specific markers linked to semen quality traits in various livestock species, such as cattle, sheep, goats, pigs, buffalo, and equines. These genetic markers are essential in screening males for breeding suitability, which in turn enhances selective breeding programs. Understanding these markers is crucial for improving reproductive performance and increasing productivity in livestock populations. This review offers a comprehensive overview of the genetic markers associated with semen quality in key livestock. It explores the underlying genetic mechanisms and their practical implications in animal breeding and management. The review underscores the importance of integrating genetic insights into breeding strategies to optimize reproductive efficiency and ensure the sustainable development of livestock industries.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yihong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Iqra Ashraf
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Ying Han
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Mao S, Wu C, Feng G, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Selection and Regulatory Network Analysis of Differential CircRNAs in the Hypothalamus of Goats with High and Low Reproductive Capacity. Int J Mol Sci 2024; 25:10479. [PMID: 39408808 PMCID: PMC11476610 DOI: 10.3390/ijms251910479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
4
|
Bai Y, Bo D, Bi Y, Areb E, Zhu H, Pan C, Lan X. Analysis of goat PPP6C mRNA profile, detection of genetic variations, and their associations with litter size. Anim Reprod Sci 2024; 268:107544. [PMID: 38981196 DOI: 10.1016/j.anireprosci.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
The Protein Phosphatase 6 Catalytic Subunit (PPP6C) is evolutionarily a conserved gene in eukaryotes known to play a significant role in mammalian reproduction. This study aimed to investigate expression patterns of PPP6C and explore its association with litter size in Shaanbei white cashmere (SBWC) goats. Initially, we determined the mRNA expression levels of PPP6C in both male and female goats across multiple tissues. The results showed that PPP6C mRNA was expressed in multiple tissues, with higher levels in the testis and fallopian tubes, suggesting its involvement in goat reproduction. Additionally, we identified a novel 19 bp InDel within the PPP6C gene in a population of 1030 SBWC goats, which exhibited polymorphism. Statistical analysis revealed a significant association between the19 bp InDel mutation and litter size (P < 0.05). Subsequent, bioinformatics analysis, including linkage disequilibrium (LD) block and selective scanning, highlighted the linkage tendency among most InDel loci did not stand out within B-8 block, there were still some InDel loci linked to the 19 bp within a relatively narrow region. Furthermore, comparative analysis with Bezoars, these selective signals all indicated that this gene was under higher selection pressure, implying that the 19 bp InDel locus within the PPP6C is potentially associated with domesticated traits, particularly in relation to litter size. The results of the present study suggest that the PPP6C is a vital candidate gene affecting prolificacy in goats, with implications for selective breeding programs for goat breeds.
Collapse
Affiliation(s)
- Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Didi Bo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yutian Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ebadu Areb
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Central Ethiopia Agricultural Research Institute at Worabe Agricultural Research Center, Worabe, Ethiopia
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi 719000, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Manjutha S, Elayadeth-Meethal M, Liz Abraham B, Asaf M, Senthil Murugan S, Radhika G. Screening of InDel variants in PRDM6, myostatin and IGF2BP1 genes and association analysis with body measurement traits in Malabari and Attappadi black goats. Anim Biotechnol 2023; 34:4760-4774. [PMID: 36946789 DOI: 10.1080/10495398.2023.2189916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An insertion/deletion (InDel) polymorphism study of PR/SET domain family 6 (PRDM6), myostatin (MSTN) and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) genes was conducted in Malabari and Attappady black goats. An association study of identified InDels and body measurement traits was also performed. Body measurements included body length, chest diameter, chest depth, canon circumference, hip width, and hip height at the hip cross. The body trunk index, the body length index, the canon circumference index, and the chest width index were calculated. The Hardy-Weinberg equilibrium (HWE) was tested using a Chi-square test. The observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) were calculated. A significant difference in body measurements was found across breeds, ages, and breed x age interactions. The PRDM6 InDel was also associated with body measurement traits, such as body height, canon circumference and canon circumference index. In both Malabari and Attappadi black MSTN and PRDM6 InDels were in a state of HWE, while IGF2BP1 InDels were not. Indel markers found in the present study may be used for marker-assisted selection of growth traits among goats.
Collapse
Affiliation(s)
- Soubramaniane Manjutha
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Science University, Wayanad, India
| | - Muhammed Elayadeth-Meethal
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Science University, Wayanad, India
| | - Bindya Liz Abraham
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Science University, Wayanad, India
| | - Muhasin Asaf
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Science University, Wayanad, India
| | - S Senthil Murugan
- Department of Animal Nutrition, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Science University, Wayanad, India
| | - G Radhika
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, India
| |
Collapse
|
7
|
Wijayanti D, Luo Y, Bai Y, Pan C, Qu L, Guo Z, Lan X. New insight into copy number variations of goat SMAD2 gene and their associations with litter size and semen quality. Theriogenology 2023; 206:114-122. [PMID: 37229957 DOI: 10.1016/j.theriogenology.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Copy number variations (CNV) contribute significantly to genetic variations. Numerous studies have shown that CNV affects phenotypic traits in livestock. The SMAD family member 2 (SMAD2) is a leading candidate gene in reproduction and has a crucial effect on litter size. Additionally, SMAD2 is also required for male reproduction and influences male germ cell development. However, there are no reports on investigating the effect of CNVs in the SMAD2 gene on reproductive traits in goat. Therefore, the goal of this study was to explore associations between CNV of the SMAD2 gene and litter size and semen quality in Shaanbei white cashmere (SBWC) goats. In this study, two CNVs within the SMAD2 were identified in 352 SBWC goats (50 males and 302 females). The association analysis revealed that only CNV2 was significantly associated with female goat first-born litter size (P = 3.59 × 10-4), male semen concentration (P < 0.01), ejaculation volume, live sperm count, and sperm deformity rate (P < 0.05). In terms of phenotypic performance, the individuals with loss genotypes outperformed those with other genotypes. CNV1 and CNV2 genotype combinations containing their dominant genotypes were also associated with goat litter size (P = 1.7 × 10-5), but no differences in semen quality were found. In summary, CNV2 of the SMAD2 gene is useful for molecular marker-assisted selection breeding, as it is associated with essential goat reproductive traits.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, 46115, Indonesia.
| | - Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, 551700, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Zhong T, Wang X, Huang C, Yang L, Zhao Q, Chen X, Freitas-de-Melo A, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Niu L. A genome-wide perspective on the diversity and selection signatures in indigenous goats using 53 K single nucleotide polymorphism array. Animal 2023; 17:100706. [PMID: 36758301 DOI: 10.1016/j.animal.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Tibetan goats, Taihang goats, Jining grey goats, and Meigu goats are the representative indigenous goats in China, found in Qinghai-Tibet Plateau, Western pastoral area, Northern and Southern agricultural regions. Very few studies have conducted a comprehensive analysis of the genomic diversity and selection of these breeds. We genotyped 96 unrelated individuals, using goat 53 K Illumina BeadChip array, of the following goat breeds: Tibetan (TG), Taihang (THG), Jining grey (JGG), and Meigu (MGG). A total of 45 951 single nucleotide polymorphisms were filtered to estimate the genetic diversity and selection signatures. All breeds had a high proportion (over 95%) of polymorphic loci. The observed and excepted heterozygosity ranged from 0.338 (MGG) to 0.402 (JGG) and 0.339 (MGG) to 0.395 (JGG), respectively. Clustering analysis displayed a genetically distinct lineage for each breed, and their Fst were greater than 0.25, indicating that they had a higher genetic differentiation between groups. Furthermore, effective population size reduced in all four populations, indicating a loss of genetic diversity. In addition, runs of homozygosity were mainly distributed in 5-10 Mb. Lastly, we identified signature genes, which were closely related to high-altitude adaptation (ADIRF) and prolificity (CNTROB, SMC3, and PTEN). This study provides a valuable resource for future studies on genome-wide perspectives on the diversity and selection signatures of Chinese indigenous goats.
Collapse
Affiliation(s)
- Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinlu Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chunhua Huang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liu Yang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xiaoyong Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
9
|
Are Copy Number Variations within the FecB Gene Significantly Associated with Morphometric Traits in Goats? Animals (Basel) 2022; 12:ani12121547. [PMID: 35739883 PMCID: PMC9219420 DOI: 10.3390/ani12121547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
The Booroola fecundity (FecB) gene is a major fertility-related gene first identified in Booroola sheep. Numerous studies have investigated whether the FecB gene is a major fecundity gene in goats or whether there are other genes that play a critical role in goat fertility. Nevertheless, little attention has been paid to the role of the FecB gene in the body morphometric traits of goats, despite the positive relationship discerned between litter size and growth. We identified five copy number variations (CNVs) within the FecB gene in 641 goats, including 318 Shaanbei white cashmere (SBWC) goats, 203 Guizhou Heima (GZHM) goats, and 120 Nubian goats, which exhibited different distributions among these populations. Our results revealed that these five CNVs were significantly associated with goat morphometric traits (p < 0.05). The normal type of CNV3 was the dominant type and displayed superior phenotypes in both litter size and morphometric traits, making it an effective marker for goat breeding. Consequently, LD blocks in the region of 10 Mb upstream and downstream from FecB and potential transcription factors (TFs) that could bind with the CNVs were analyzed via bioinformatics. Although no significant LD block was detected, our results illustrated that these CNVs could bind to growth-related TFs and indirectly affect the growth development of the goats. We identified potential markers to promote litter size and growth, and we offer a theoretical foundation for further breeding work.
Collapse
|