1
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
2
|
Anas M, Ward AK, McCarthy KL, Borowicz PP, Reynolds LP, Caton JS, Dahlen CR, Diniz WJS. lncRNA-gene network analysis reveals the effects of early maternal nutrition on mineral homeostasis and energy metabolism in the fetal liver transcriptome of beef heifers. J Nutr Biochem 2024; 132:109691. [PMID: 38879136 DOI: 10.1016/j.jnutbio.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/21/2024]
Abstract
Maternal nutrition during pregnancy influences fetal development; however, the regulatory markers of fetal programming across different gestational phases remain underexplored in livestock models. Herein, we investigated the regulatory role of long non-coding RNAs (lncRNAs) on fetal liver gene expression, the impacts of maternal vitamin and mineral supplementation, and the rate of maternal body weight gain during the periconceptual period. To this end, crossbred Angus heifers (n=31) were randomly assigned to a 2×2 factorial design to evaluate the main effects of the rate of weight gain (low gain [LG, avg. daily gain of 0.28 kg/day] vs. moderate gain [MG, avg. daily gain of 0.79 kg/day]) and vitamins and minerals supplementation (VTM vs. NoVTM). On day 83±0.27 of gestation, fetuses were collected for morphometric measurements, and fetal liver was collected for transcriptomic and mineral analyses. The maternal diet significantly affected fetal liver development and mineral reserves. Using an RNA-Seq approach, we identified 320 unique differentially expressed genes (DEGs) across all six comparisons (FDR <0.05). Furthermore, lncRNAs were predicted through the FEELnc pipeline, revealing 99 unique differentially expressed lncRNAs (DELs). The over-represented pathways and biological processes (BPs) were associated with energy metabolism, Wnt signaling, CoA carboxylase activity, and fatty acid metabolism. The DEL-regulated BPs were associated with metal ion transport, pyrimidine metabolism, and classical energy metabolism-related glycolytic, gluconeogenic, and TCA cycle pathways. Our findings suggest that lncRNAs regulate mineral homeostasis- and energy metabolism-related gene networks in the fetal liver in response to early maternal nutrition.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kacie L McCarthy
- Department of Animal Sciences, University of Nebraska, Lincoln, NE, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | | |
Collapse
|
3
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
4
|
Daneshi M, Borowicz PP, Entzie YL, Syring JG, King LE, Safain KS, Anas M, Reynolds LP, Ward AK, Dahlen CR, Crouse MS, Caton JS. Influence of Maternal Nutrition and One-Carbon Metabolites Supplementation during Early Pregnancy on Bovine Fetal Small Intestine Vascularity and Cell Proliferation. Vet Sci 2024; 11:146. [PMID: 38668414 PMCID: PMC11054626 DOI: 10.3390/vetsci11040146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024] Open
Abstract
To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.
Collapse
Affiliation(s)
- Mojtaba Daneshi
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Pawel P. Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Yssi L. Entzie
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Jessica G. Syring
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Layla E. King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN 56716, USA;
| | - Kazi Sarjana Safain
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Lawrence P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Alison K. Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Carl R. Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| | - Matthew S. Crouse
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA;
| | - Joel S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA; (P.P.B.); (Y.L.E.); (K.S.S.); (M.A.); (L.P.R.); (C.R.D.)
| |
Collapse
|
5
|
Baumgaertner F, Ramírez-Zamudio GD, Menezes ACB, Jurgens IM, Hirchert MR, Hurlbert JL, Bochantin-Winders KA, Diniz WJS, Reynolds LP, Ward AK, Borowicz PP, Underdahl SR, Kirsch JD, Dorsam ST, Sedivec KK, Swanson KC, Caton JS, Dahlen CR. Rate of body weight gain during early gestation in F0 beef heifers has effects that extend multigenerationally to the F2 fetuses. J Anim Sci 2024; 102:skae295. [PMID: 39324625 PMCID: PMC11503215 DOI: 10.1093/jas/skae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Our aim was to investigate the effects of maternal (F0) body weight (BW) gain during the first 84 d of gestation on body composition, ovarian reserve, and hormonal and metabolic parameters of breeding-age F1 heifers, as well as the BW and morphometry of F2 fetuses. The study also evaluated the effect of maternal BW gain (F0) on the mRNA relative abundance of the small intestine of both F1 heifers and F2 fetuses. Crossbred Angus heifers (F0; n = 100) were managed to gain 0.20 kg/d (low gain [LG], n = 50) or 0.75 kg/d (moderate gain [MG], n = 50) for the first 84 d of gestation. Subsequently, F0 dams were managed on a common forage-based diet for the rest of gestation until the weaning of the F1 offspring. At 15 mo of age, a subset of F1 heifers was randomly selected for the current experiment (n = 8 LG and n = 8 MG). Heifers were bred via artificial insemination (AI; day 0), then harvested on day 84 of gestation. On days -10, 42, and 84, BW was recorded, and blood was collected and analyzed for concentrations of glucose, non-esterified fatty acids, progesterone, insulin, and insulin-like growth factor-1. The weight of F1 carcasses, organs, gravid uteri, and F2 fetuses and organs were recorded at harvest. Visible follicles were counted on F1 ovaries at harvest, and histology was used to count microscopic follicles. Liver and jejunal samples from F1 heifers were collected to measure tissue oxygen consumption and jejunal samples from F1 heifers and F2 fetuses were collected for mRNA relative abundance analysis. BW of F1 heifers from MG dams tended to be 12 kg greater (P = 0.06) than for F1 heifers from LG dams. Concentrations of glucose were greater (P = 0.03) in F1 heifers from the MG group, with no differences in other blood metabolites or follicular populations (P ≥ 0.16). Interestingly, mammary glands were heavier (P = 0.05), and placentas and body depth tended to be heavier and greater, respectively (P ≤ 0.10), for F2 fetuses from F0 LG heifers. Oxygen consumption in the liver and jejunum, as well as mRNA relative abundance in the jejunum of F1 heifers, were not affected by F0 rate of gain (P ≥ 0.16). However, the NDUFC1, SDHA, UQCR1, and PPARG genes were upregulated (P ≤ 0.05) in the jejunum of F2 fetuses from the LG group. In conclusion, BW gain of F0 heifers during early gestation exerts subtle effects on pre-breeding BW and blood metabolites in F1 offspring, with impacts present in F2 placenta, mammary gland, and intestine.
Collapse
Affiliation(s)
- Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Germán Darío Ramírez-Zamudio
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP 13635-900, Brazil
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Isabella M Jurgens
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Mara R Hirchert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kerri A Bochantin-Winders
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | | | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K Ward
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P Borowicz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - S R Underdahl
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Kendall C Swanson
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
6
|
Hurlbert JL, Menezes ACB, Baumgaertner F, Bochantin-Winders KA, Jurgens IM, Kirsch JD, Amat S, Sedivec KK, Swanson KC, Dahlen CR. Vitamin and mineral supplementation to beef heifers during gestation: impacts on morphometric measurements of the neonatal calf, vitamin and trace mineral status, blood metabolite and endocrine profiles, and calf organ characteristics at 30 h after birth. J Anim Sci 2024; 102:skae116. [PMID: 38666437 PMCID: PMC11121445 DOI: 10.1093/jas/skae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
To examine the effects of feeding a vitamin and mineral supplement to beef heifers throughout gestation on mineral status and hormone/endocrine profiles in the dam and calf, and morphometric characteristics and organ mass of the calf at 30 h after birth, Angus-based heifers (n = 72, 14 to 15 mo of age, initial body weight [BW] = 380.4 ± 50.56 kg) were estrus synchronized and artificially inseminated (AI) with female-sexed semen. Heifers were blocked by BW and randomly assigned to receive either a basal diet (CON; n = 36) or a basal diet plus a vitamin and mineral supplement (VTM; n = 36) via an individual feeding system beginning at breeding, with both diets targeting BW gains of 0.45 kg heifer-1·d-1. Heifers not pregnant after the first AI (CON, n = 19; VTM, n = 18) were rebred via AI 60 d after treatment initiation, and heifers gestating female fetuses (CON, n = 7; VTM, n = 7) received treatments throughout gestation and were experimental units for this study. Calves were separated from their dams and fed colostrum replacer within 2 h of birth and euthanized 30 h after the first feeding. Calf morphometrics were recorded, and tissues were weighed and sampled. Serum from the dam at calving and serum, liver, and muscle from the calf at 30 h were analyzed for concentrations of minerals. Serum from the dam and calf were analyzed for concentrations of leptin, vitamins A, D, and E, cortisol, growth hormone, and insulin-like growth factor 1. All response variables were analyzed using the MIXED procedure of SAS. Calf body morphometrics and BW of the dam at calving (P ≥ 0.32), calf organ weights (P ≥ 0.21), and calf ovarian follicle counts (P ≥ 0.13) were not affected by maternal treatment. Concentrations of Se and Co in calf serum and Se in calf liver were increased (P ≤ 0.02) in VTM. Serum concentrations of Co and vitamin A in the dam were greater (P ≤ 0.01) in supplemented compared with nonsupplemented dams, and serum concentrations of vitamin D were greater (P ≤ 0.0003) in supplemented dams and calves compared with the nonsupplemented cohort. Maternal supplementation supported vitamin and mineral status in the neonate, yet had no discernable impact on BW, organ mass, or circulating hormones/metabolites in the calf. Evaluating offspring at later postnatal time points is warranted to determine if prenatal vitamin and mineral supplementation affects performance, health, metabolism, and efficiency of energy utilization in key metabolic tissues in the calf.
Collapse
Affiliation(s)
- Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| | - Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, 58483, USA
| | - Kerri A Bochantin-Winders
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| | - Isabella M Jurgens
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, 58483, USA
| | - Kendall C Swanson
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
7
|
Luecke SM, Holman DB, Schmidt KN, Gzyl KE, Hurlbert JL, Menezes ACB, Bochantin KA, Kirsch JD, Baumgaertner F, Sedivec KK, Swanson KC, Dahlen CR, Amat S. Whole-body microbiota of newborn calves and their response to prenatal vitamin and mineral supplementation. Front Microbiol 2023; 14:1207601. [PMID: 37434710 PMCID: PMC10331429 DOI: 10.3389/fmicb.2023.1207601] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Early life microbial colonization and factors affecting colonization patterns are gaining interest due to recent developments suggesting that early life microbiome may play a role in Developmental Origins of Health and Disease. In cattle, limited information exists on the early microbial colonization of anatomical sites involved in bovine health beyond the gastrointestinal tract. Here, we investigated 1) the initial microbial colonization of seven different anatomical locations in newborn calves and 2) whether these early life microbial communities and 3) serum cytokine profiles are influenced by prenatal vitamin and mineral (VTM) supplementation. Samples were collected from the hoof, liver, lung, nasal cavity, eye, rumen (tissue and fluid), and vagina of beef calves that were born from dams that either received or did not receive VTM supplementation throughout gestation (n = 7/group). Calves were separated from dams immediately after birth and fed commercial colostrum and milk replacer until euthanasia at 30 h post-initial colostrum feeding. The microbiota of all samples was assessed using 16S rRNA gene sequencing and qPCR. Calf serum was subjected to multiplex quantification of 15 bovine cytokines and chemokines. Our results indicated that the hoof, eye, liver, lung, nasal cavity, and vagina of newborn calves were colonized by site-specific microbiota, whose community structure differed from the ruminal-associated communities (0.64 ≥ R2 ≥ 0.12, p ≤ 0.003). The ruminal fluid microbial community was the only one that differed by treatment (p < 0.01). However, differences (p < 0.05) by treatment were detected in microbial richness (vagina); diversity (ruminal tissue, fluid, and eye); composition at the phylum and genus level (ruminal tissue, fluid, and vagina); and in total bacterial abundance (eye and vagina). From serum cytokines evaluated, concentration of chemokine IP-10 was greater (p = 0.02) in VTM calves compared to control calves. Overall, our results suggest that upon birth, the whole-body of newborn calves are colonized by relatively rich, diverse, and site-specific bacterial communities. Noticeable differences were observed in ruminal, vaginal, and ocular microbiota of newborn calves in response to prenatal VTM supplementation. These findings can derive future hypotheses regarding the initial microbial colonization of different body sites, and on maternal micronutrient consumption as a factor that may influence early life microbial colonization.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Katherine E. Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Jennifer L. Hurlbert
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Ana Clara B. Menezes
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kerri A. Bochantin
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - James D. Kirsch
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Friederike Baumgaertner
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, United States
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
8
|
Anas M, Diniz WJS, Menezes ACB, Reynolds LP, Caton JS, Dahlen CR, Ward AK. Maternal Mineral Nutrition Regulates Fetal Genomic Programming in Cattle: A Review. Metabolites 2023; 13:metabo13050593. [PMID: 37233634 DOI: 10.3390/metabo13050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | | | - Ana Clara B Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 36849, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
9
|
Diniz WJS, Ward AK, McCarthy KL, Kassetas CJ, Baumgaertner F, Reynolds LP, Borowicz PP, Sedivec KK, Kirsch JD, Dorsam ST, Neville TL, Forcherio JC, Scott R, Caton JS, Dahlen CR. Periconceptual Maternal Nutrition Affects Fetal Liver Programming of Energy- and Lipid-Related Genes. Animals (Basel) 2023; 13:ani13040600. [PMID: 36830387 PMCID: PMC9951695 DOI: 10.3390/ani13040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM-at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)-from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways. Crossbred Angus beef heifers (n = 35) were randomly assigned to one of four treatments in a 2 × 2 factorial design (VTM_LG, VTM_MG, NoVTM_LG, and NoVTM_MG). Gene expression was measured with RNA-Seq in fetal livers collected on day 83 ± 0.27 of gestation. Our results show that vitamin and mineral supplementation and rate of weight gain led to the differential expression of hepatic genes in all treatments. We identified 591 unique differentially expressed genes across all six VTM-gain contrasts (FDR ≤ 0.1). Over-represented pathways were related to energy metabolism, including PPAR and PI3K-Akt signaling pathways, as well as lipid metabolism, mineral transport, and amino acid transport. Our findings suggest that periconceptual maternal nutrition affects fetal hepatic function through altered expression of energy- and lipid-related genes.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| | - Alison K. Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L. McCarthy
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Cierrah J. Kassetas
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | - Lawrence P. Reynolds
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P. Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kevin K. Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - James D. Kirsch
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T. Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Tammi L. Neville
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | - Ronald Scott
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA
| | - Joel S. Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
10
|
Menezes ACB, Dahlen CR, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, Crouse MS. Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at day 83 of Gestation. Metabolites 2023; 13:metabo13020175. [PMID: 36837794 PMCID: PMC9961797 DOI: 10.3390/metabo13020175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.
Collapse
Affiliation(s)
- Ana Clara B. Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA
- Correspondence: (A.C.B.M.); (M.S.C.)
| | - Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L. McCarthy
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Cierrah J. Kassetas
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Friederike Baumgaertner
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - James D. Kirsch
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T. Dorsam
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Tammi L. Neville
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kevin K. Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | | | - Ronald Scott
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Matthew S. Crouse
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- Correspondence: (A.C.B.M.); (M.S.C.)
| |
Collapse
|
11
|
McCarthy KL, Underdahl SR, Undi M, Dahlen CR. Using precision tools to manage and evaluate the effects of mineral and protein/energy supplements fed to grazing beef heifers. Transl Anim Sci 2023; 7:txad013. [PMID: 36911554 PMCID: PMC9997776 DOI: 10.1093/tas/txad013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Our objectives were to develop a Mobile Cow Command Center (MCCC) capable of precision monitoring of grazing heifers to 1) examine the relationship between supplement intake on concentrations of liver mineral and blood metabolites and 2) examine activity, reproductive, and health behavior. Yearling crossbred Angus heifers (N = 60; initial BW = 400.4 ± 6.2 kg) were fitted with radio frequency identification ear tags that allowed access to electronic feeders (SmartFeed system; C-Lock Inc., Rapid City, SD), and with activity monitoring tags (CowManager B.V., the Netherlands) that monitored reproductive, feeding, and health-associated behaviors. Heifers were assigned randomly to one of three treatments for a 57-day monitoring period: 1) no supplement (CON; N = 20), 2) free choice mineral (MIN; Purina Wind and Rain Storm [Land O'Lakes, Inc.], N = 20), or 3) free choice energy and mineral supplement (NRG; Purina Accuration Range Supplement 33 with added MIN [Land O'Lakes, Inc.], N = 20). Consecutive day body weights, blood, and liver biopsies were collected at pasture turnout and final day of monitoring. By design, mineral intake was greatest in MIN heifers (49 ± 37 g/d) and energy supplement intake was greatest in NRG heifers (1,257 ± 37 g/d). Final BW and ADG were similar among treatments (P > 0.42). Concentrations of glucose on day 57 were greater (P = 0.01) in NRG compared with CON and MIN heifers. Liver concentrations of Se and Fe on day 57 were greater (P < 0.05) in NRG heifers than CON, with MIN being intermediate. Activity tags reported NRG heifers spent less time eating (P < 0.0001) and more time (P < 0.0001) being "highly active" than MIN with CON heifers being intermediate. Data retrieved from activity tags identified 16 of 28 pregnant heifers exhibiting some type of estrus-associated behavior even after confirmation of established pregnancy. The activity monitoring system triggered a total of 146 health alerts from 34 of the 60 heifers monitored, but only 3 heifers of the heifers initiating an electronic health alert needed clinical treatment. However, animal care staff identified nine additional heifers that required treatment for which no electronic health alert was generated. The electronic feeders successfully controlled intake of individual heifers managed in groups pastures; however, the activity monitoring system misrepresented estrus and health events.
Collapse
Affiliation(s)
- Kacie L McCarthy
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - Sarah R Underdahl
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| | - Michael Undi
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND, USA
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
12
|
Hurlbert JL, Baumgaertner F, McCarthy KL, Long T, Wieland C, Sedivec KK, Dahlen CR. Effects of feeding a vitamin and mineral supplement to cow-calf pairs grazing native range. Transl Anim Sci 2023; 7:txad077. [PMID: 37483682 PMCID: PMC10358721 DOI: 10.1093/tas/txad077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Our objectives were to evaluate the impacts of providing vitamin and mineral (VTM) supplements to cow-calf pairs during the summer grazing period on cow and calf performance and liver concentrations of minerals. During a two-year period, 727 crossbred cows and their calves (initial cow BW = 601.7 ± 48.1 kg; calf BW = 87.8 ± 5.0 kg; n = 381 in year 1, n = 346 in year 2) from the Central Grasslands Research Extension Center (Streeter, N.D.) were blocked by parity (young [parity 1 to 3], and old [parity 4+]) and randomly assigned to pastures at the beginning of the grazing season (16 in year 1 and 14 in year 2). Pastures were assigned to receive a free-choice VTM supplement (SUPP) or no VTM supplement (CON) from pasture turnout to pasture removal (158 and 156 days in year 1 and 2, respectively). Consecutive day weights were taken from cows and calves at pasture turnout and removal and liver biopsies were collected from a subset of cows at both timepoints and from calves at weaning. Cows were bred via AI 37 to 41 d after pasture turnout and by natural service cleanup bulls for a 70 to 80 d breeding season. Calving and weaning data were collected from the calf conceived and gestated during treatments. Data were analyzed for the effect of VTM treatment (SUPP vs. CON), block of parity, and their interaction using the GLM procedure of SAS with pasture as the experimental unit. Year was considered a random effect in the final analysis. Cow pregnancy success was evaluated using the GLIMMIX procedure in SAS with model terms of VTM treatment, parity, and their interaction with year as a random effect. In year 2, cows in differing days postpartum (DPP) groups at pasture turnout (66.1, 48.8, and 34.5 ± 1.04 DPP for EARLY, MID, and LATE groups, respectively) were selected for liver biopsies with cow as the experimental unit. Cow and calf BW and BW change were not impacted (P ≥ 0.20) by VTM access. Pregnancy rate to AI, overall pregnancy rate, gestating calf birth BW and calving distribution were not affected (P ≥ 0.11) by treatment. Liver concentrations of Se, Cu, and Co were greater (P ≤ 0.002) at pasture removal and weaning for cows and suckling calves that had access to VTM. Cows considered EARLY calving had greater (P = 0.05) concentrations of liver Se compared with LATE calving cows. Although VTM supplementation enhanced concentrations of key minerals in the liver of cow-calf pairs, reproductive and growth performance was not affected.
Collapse
Affiliation(s)
- Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Kacie L McCarthy
- Present address: Department of Animal Science, University of Nebraska, Lincoln, NE 68583, USA
| | - Timothy Long
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Cody Wieland
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Kevin K Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | | |
Collapse
|
13
|
Dahlen CR, Reynolds LP, Caton JS. Selenium supplementation and pregnancy outcomes. Front Nutr 2022; 9:1011850. [PMID: 36386927 PMCID: PMC9659920 DOI: 10.3389/fnut.2022.1011850] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 09/13/2023] Open
Abstract
In vertebrates and invertebrates, selenium (Se) is an essential micronutrient, and Se deficiency or excess is associated with gonadal insufficiency and gamete dysfunction in both males and females, leading to implantation failure, altered embryonic development and, ultimately, infertility. During pregnancy, Se excess or deficiency is associated with miscarriage, pre-eclampsia (hypertension of pregnancy), gestational diabetes, fetal growth restriction and preterm birth. None of this is surprising, as Se is present in high concentrations in the ovary and testes, and work in animal models has shown that addition of Se to culture media improves embryo development and survival in vitro in association with reduced reactive oxygen species and less DNA damage. Selenium also affects uterine function and conceptus growth and gene expression, again in association with its antioxidant properties. Similarly, Se improves testicular function including sperm count, morphology and motility, and fertility. In animal models, supplementation of Se in the maternal diet during early pregnancy improves fetal substrate supply and alters fetal somatic and organ growth. Supplementation of Se throughout pregnancy in cows and sheep that are receiving an inadequate or excess dietary intake affected maternal whole-body and organ growth and vascular development, and also affected expression of angiogenic factors in maternal and fetal organs. Supplemental Se throughout pregnancy also affected placental growth, which may partly explain its effects on fetal growth and development, and also affected mammary gland development, colostrum yield and composition as well as postnatal development of the offspring. In conclusion, Se supplementation in nutritionally compromised pregnancies can potentially improve fertility and pregnancy outcomes, and thereby improve postnatal growth and development. Future research efforts should examine in more detail and more species the potential benefits of Se supplementation to reproductive processes in mammals.
Collapse
Affiliation(s)
- Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | | | | |
Collapse
|