1
|
Hasani SJ, Rakhshanpour A, Enferadi A, Sarani S, Samiei A, Esmaeilnejad B. A review of Hepatozoonosis caused by Hepatozoon canis in dogs. J Parasit Dis 2024; 48:424-438. [PMID: 39145354 PMCID: PMC11319582 DOI: 10.1007/s12639-024-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatozoon canis is a type of single-celled organism is spread by ticks and commonly affects dogs. It is responsible for causing one of the most significant parasitic diseases in dogs, called Hepatozoonosis. It is considered one of the most common causes of canine vector-borne diseases because it is closely linked to Rhipicephalus sanguineus (the brown dog tick), a species found worldwide. Hepatozoonosis caused by H. canis is prevalent in regions such as South Europe, South America, Asia, and Africa. H. canis often causes emaciation, anemia, and intermittent fever in infected dogs. The drugs used to treat H. canis infection in dogs include the combination of imidocarb dipropionate with doxycycline, toltrazoril, tetracycline hydrochloride, and the combination of trimethoprim-sulfamethoxazole.The primary solution to prevent the spread of infections caused by H. canis is to control the population of R. sanguineus ticks because H. canis is spread through ticks. This review aims to provide a brief overview of various studies conducted on the morphology, life cycle, hosts, epidemiology, clinical symptoms, laboratory diagnosis, autopsy findings, differential diagnosis, treatment, and prevention methods of H. canis.
Collapse
Affiliation(s)
| | - Alaleh Rakhshanpour
- Department of Clinical Pathology and Internal Medicine, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ahmad Enferadi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Saeedeh Sarani
- Department of Pathobiology, Faculty of Veterinary Medicine, Zabol University, Zabol, Iran
| | - Awat Samiei
- Present Address: Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Bijan Esmaeilnejad
- Present Address: Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Kuručki M, Sukara R, Ćirković V, Ćirović D, Tomanović S. Molecular Detection and Genetic Variability of Hepatozoon canis in Golden Jackals ( Canis aureus L. 1758) in Serbia. BIOLOGY 2024; 13:411. [PMID: 38927291 PMCID: PMC11201132 DOI: 10.3390/biology13060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Hepatozoon canis is a protozoan tick-borne parasite infecting domestic and wild canids, including foxes, wolves, and jackals. It is mainly found in dogs but has also been detected in several wild carnivores, including foxes, wolves, and jackals. Host transmission primarily occurs through the ingestion of infected ticks, typically Rhipicephalus sanguineus, with documented instances of transplacental transmission from infected females to cubs. In Serbia, the golden jackal is common throughout the country, and its population has increased in recent years. Previous research has documented the presence of several vector-borne pathogens in the jackal population in Serbia, so we conducted this study to determine the presence, prevalence, and genetic variability of H. canis. Over eleven years (2010-2020), 114 animal samples were collected from 23 localities in Serbia. A total of 90/114 (78.95%) jackals were positive for H. canis, and they came from 22 localities. Among 15 juveniles, almost half (6/15 (40%)) tested positive for H. canis. In addition to the high prevalence, high genetic variability of the pathogen was also found. According to the mutated positions, four sequence types (S4-S7) of H. canis were determined. Based on our earlier research on the grey wolf and on this study, it can be observed that various sequence types of H. canis circulate within wild canid populations in Serbia. The prevalence of H. canis infection in wild carnivores raises significant concerns for wildlife conservation and animal health. Infected animals may act as reservoirs for the disease, posing a potential risk to domestic animals by acting as a source of infection.
Collapse
Affiliation(s)
- Milica Kuručki
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (R.S.); (V.Ć.); (S.T.)
| | - Valentina Ćirković
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (R.S.); (V.Ć.); (S.T.)
| | - Duško Ćirović
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (R.S.); (V.Ć.); (S.T.)
| |
Collapse
|
3
|
Veinović G, Sukara R, Mihaljica D, Penezić A, Ćirović D, Tomanović S. The Occurrence and Diversity of Tick-Borne Pathogens in Small Mammals from Serbia. Vector Borne Zoonotic Dis 2024; 24:285-292. [PMID: 38346321 DOI: 10.1089/vbz.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Background: Despite abundance of small mammals in Serbia, there is no information on their role in the epidemiology of tick-borne diseases (TBDs). This retrospective study aimed to identify different tick-borne pathogens (TBPs) in small mammals in Serbia collected during 2011. Materials and Methods: A total of 179 small mammals were collected from seven different localities in Serbia. The five localities belong to the capital city of Serbia-Belgrade: recreational areas-Ada Ciganlija, Titov gaj, and Košutnjak as well as mountainous suburban areas used for hiking-Avala and Kosmaj. The locality Veliko Gradište is a tourist place in northeastern Serbia, whereas the locality Milošev Do is a remote area in western Serbia with minor human impact on the environment. Results: The results of the presented retrospective study are the first findings of Rickettsia helvetica, Rickettsia monacensis, Neoehrlichia mikurensis, Borrelia afzelii, Borrelia miyamotoi, Babesia microti, Hepatozoon canis, and Coxiella burnetii in small mammals in Serbia. The presence of R. helvetica was confirmed in two Apodemus flavicollis, the presence of one of the following pathogens, R. monacensis, B. afzelii, H. canis, Ba. microti, and N. mikurensis was confirmed in one A. flavicollis each, whereas the presence of B. miyamotoi was confirmed in one Apodemus agrarius. Coinfection with B. afzelii and Ba. microti was confirmed in one A. flavicollis. DNA of C. burnetii was detected in 3 of 18 pools. Conclusions: The results confirm that detected pathogens circulate in the sylvatic cycle in Serbia and point to small mammals as potential reservoir hosts for the detected TBPs. Further large-scale studies on contemporary samples are needed to clarify the exact role of particular small mammal species in the epidemiology of TBDs caused by the detected pathogens.
Collapse
Affiliation(s)
- Gorana Veinović
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Díaz-Corona C, Roblejo-Arias L, Piloto-Sardiñas E, Díaz-Sánchez AA, Foucault-Simonin A, Galon C, Wu-Chuang A, Mateos-Hernández L, Zając Z, Kulisz J, Wozniak A, Castro-Montes de Oca MK, Lobo-Rivero E, Obregón D, Moutailler S, Corona-González B, Cabezas-Cruz A. Microfluidic PCR and network analysis reveals complex tick-borne pathogen interactions in the tropics. Parasit Vectors 2024; 17:5. [PMID: 38178247 PMCID: PMC10765916 DOI: 10.1186/s13071-023-06098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.
Collapse
Affiliation(s)
- Cristian Díaz-Corona
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Lisset Roblejo-Arias
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Elianne Piloto-Sardiñas
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Adrian A Díaz-Sánchez
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Angélique Foucault-Simonin
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Clemence Galon
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Wozniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - María Karla Castro-Montes de Oca
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Evelyn Lobo-Rivero
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sara Moutailler
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Belkis Corona-González
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, 32700, San José de Las Lajas, Mayabeque, Cuba.
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France.
| |
Collapse
|
5
|
Daněk O, Lesiczka PM, Hammerbauerova I, Volfova K, Juránková J, Frgelecová L, Modrý D, Hrazdilova K. Role of invasive carnivores (Procyon lotor and Nyctereutes procyonoides) in epidemiology of vector-borne pathogens: molecular survey from the Czech Republic. Parasit Vectors 2023; 16:219. [PMID: 37408071 DOI: 10.1186/s13071-023-05834-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/10/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Vector-borne pathogens (VBPs) are a major threat to humans, livestock and companion animals worldwide. The combined effect of climatic, socioeconomic and host composition changes favours the spread of the vectors, together with the expansion of invasive carnivores contributing to the spread of the pathogens. In Europe, the most widespread invasive species of carnivores are raccoons (Procyon lotor) and raccoon dogs (Nyctereutes procyonoides). This study focused on the detection of four major groups of VBPs namely Babesia, Hepatozoon, Anaplasma phagocytophilum and Bartonella in invasive and native carnivores in the Czech Republic, with the emphasis on the role of invasive carnivores in the eco-epidemiology of said VBPs. METHODS Spleen samples of 84 carnivores of eight species (Canis aureus, Canis lupus, Lynx lynx, P. lotor, Martes foina, Lutra lutra, Mustela erminea and N. procyonoides) were screened by combined nested PCR and sequencing for the above-mentioned VBPs targeting 18S rRNA and cytB in hemoprotozoa, groEL in A. phagocytophilum, and using multilocus genotyping in Bartonella spp. The species determination is supported by phylogenetic analysis inferred by the maximum likelihood method. RESULTS Out of 84 samples, 44% tested positive for at least one pathogen. Five different species of VBPs were detected in P. lotor, namely Bartonella canis, Hepatozoon canis, Hepatozoon martis, A. phagocytophilum and Bartonella sp. related to Bartonella washoensis. All C. lupus tested positive for H. canis and one for B. canis. Three VBPs (Hepatozoon silvestris, A. phagocytophilum and Bartonella taylorii) were detected in L. lynx for the first time. Babesia vulpes and yet undescribed species of Babesia, not previously detected in Europe, were found in N. procyonoides. CONCLUSIONS Wild carnivores in the Czech Republic are hosts of several VBPs with potential veterinary and public health risks. Among the studied carnivore species, the invasive raccoon is the most competent host. Raccoons are the only species in our study where all the major groups of studied pathogens were detected. None of the detected pathogen species were previously detected in these carnivores in North America, suggesting that raccoons adapted to local VBPs rather than introduced new ones. Babesia vulpes and one new, probably imported species of Babesia, were found in raccoon dogs.
Collapse
Affiliation(s)
- Ondřej Daněk
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Paulina Maria Lesiczka
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Iva Hammerbauerova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karolina Volfova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Juránková
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - David Modrý
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristyna Hrazdilova
- Department of Chemistry and Biochemistry, Mendel University, Brno, Czech Republic.
| |
Collapse
|
6
|
Ebani VV, Nardoni S, Mancianti F. Arthropod-Borne Pathogens in Wild Canids. Vet Sci 2023; 10:vetsci10020165. [PMID: 36851469 PMCID: PMC9964035 DOI: 10.3390/vetsci10020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Wild canids, as well as other wild animal species, are largely exposed to bites by ticks and other hematophagous vectors where the features favoring their presence and spread are found in wooded and semi-wooded areas. Much of the information about arthropod-borne infections concerns domestic and companion animals, whereas data about these infections in wild canids are not exhaustive. The present study is a narrative review of the literature concerning vector-borne infections in wild canids, highlighting their role in the epidemiology of arthropod-borne bacteria and protozoa.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-6968
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|