1
|
Peng H, Guo Y, Zhang J, Hei M, Li Y, Zhang W. In Vitro Screening of Trehalose Synbiotics and Their Effects on Early-Lactating Females and Offspring Mice. Antioxidants (Basel) 2024; 13:1223. [PMID: 39456476 PMCID: PMC11505180 DOI: 10.3390/antiox13101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Activities such as childbirth and breastfeeding can cause severe oxidative stress and inflammatory damage to the mother during early lactation, and can affect animal milk production, and the growth and development of offspring. Trehalose alleviates damage to the body by endowing it with stress resistance. In this study, we used trehalose combined with Lactobacillus plantarum, Bifidobacterium longum, Bacillus subtilis, and Saccharomyces cerevisiae to explore whether dietary intervention can alleviate oxidative stress and inflammatory damage in early lactation and to evaluate the growth ability, acid production ability, antioxidant ability, non-specific adhesion ability, antibacterial ability, and other parameters to determine the optimal combinations and proportions. The results showed that the synbiotics composed of 2.5% trehalose and 1 × 107 cfu/g of Bifidobacterium longum could regulate the gut microbiota, and promote mammary gland development in dams by reducing progesterone (PROG) content in the blood, increasing prolactin (PRL) and insulin-like growth factor-1 (IGF-1) content, enhancing their antioxidant and immune abilities, and effectively increasing the weight and lactation of early lactating dams. In addition, it can also affect the growth of offspring and the development of the intestinal barrier. These results indicate that trehalose synbiotics have great potential in alleviating oxidative stress and inflammatory damage in early lactation.
Collapse
Affiliation(s)
| | | | | | | | - Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.P.); (Y.G.); (J.Z.); (M.H.)
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.P.); (Y.G.); (J.Z.); (M.H.)
| |
Collapse
|
2
|
Zhang L, Wang S, Zhang W, Chang G, Guo L, Li X, Gao W. Prospects of yam (Dioscorea) polysaccharides: Structural features, bioactivities and applications. Food Chem 2024; 446:138897. [PMID: 38430768 DOI: 10.1016/j.foodchem.2024.138897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Yam (Dioscorea) is a tuber crop cultivated for food security, revenue, and medicinal purposes. It has been used to treat diabetes, asthma, diarrhea, and other diseases. The main active ingredients in yam, polysaccharides, are regarded to be the important reason for its widespread applications. Now, a comprehensive review of research developments of yam polysaccharides (YPs) was presented to explore their prospects. We outlined the structural characteristics, biological activities, structure-activity relationships, and potential applications. Around 13 neutral components and 17 acidic components were separated. They exhibited various bioactivities, including immunomodulatory, hypoglycemic, hypolipidemic, antioxidant, gastrointestinal protective, anti-fatigue, and senile disease treatment activities, as well as prebiotic effect. Structure-activity relationships illustrated that unique structural properties, chemical modifications, and carried biopolymers could influence the bioactivities of YPs. The potential applications in medicine, food, and other fields have also been summarized.
Collapse
Affiliation(s)
- Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin 300402, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
3
|
Li F, Lu Y, He Z, Yu D, Zhou J, Cao H, Zhang X, Ji H, Lv K, Yu M. Analysis of carcass traits, meat quality, amino acid and fatty acid profiles between different duck lines. Poult Sci 2024; 103:103791. [PMID: 38678975 PMCID: PMC11067342 DOI: 10.1016/j.psj.2024.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
To investigate the effect of genetic selection on meat quality in ducks, twenty of each fast growth ducks (LCA) and slow growth ducks (LCC) selected from F6 generation of Cherry Valley ducks (♂) x Liancheng white ducks (♀) were analyzed for carcass characteristics, meat quality (physicochemical and textural characteristics), amino acid and fatty acid profiles at 7 wk. Results showed that live body weight, slaughter weight, eviscerated yield and abdominal fat percentage of LCA were significantly higher than those in LCC ducks (P < 0.01). Moreover, the average area and diameter of myofiber were larger in LCA than LCC ducks (P < 0.01). The breast and thigh muscles of LCA exhibited significantly lower water holding capacity and thermal loss compared with LCC ducks (P < 0.01). In addition, the content of nonessential amino acids (Glu, Asp, and Arg) in breast muscles and Asp, Ser, Thr, and Met in thigh muscles was higher in LCC than LCA ducks (P < 0.05). The proportion of polyunsaturated fatty acids (PUFA) in breast muscles of LCC was higher than LCA ducks (P < 0.05). However, the content of saturated fatty acids (SFA) in breast and thigh muscles of LCA was higher compared with LCC ducks (P < 0.05). The proportion of monounsaturated fatty acids (MUFA) in thigh muscles was significantly higher in LCC compared with LCA ducks (P < 0.01). Finally, multiple traits were evaluated by applying principal component analysis (PCA) and the results indicated that PUFA and SFA in breast muscles of LCA played important roles in meat quality, followed by Warner-Bratzler shear force (WBSF) and MUFA. However, water holding capacity (WHC) had a dominant effect in meat quality of thigh muscles in both LCA and LCC ducks.
Collapse
Affiliation(s)
- Fan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zongliang He
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing Jiangsu Province 210036, PR China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Jing Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Heng Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Xingyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Hongjie Ji
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing Jiangsu Province 210036, PR China
| | - Kunpeng Lv
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing Jiangsu Province 210036, PR China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|
4
|
Han S, Xu G, Zhang K, Ahmad S, Wang L, Chen F, Liu J, Gu X, Li J, Zhang J. Fermented Astragalus Powder, a New Potential Feed Additive for Broilers to Improve the Growth Performance and Health. Animals (Basel) 2024; 14:1628. [PMID: 38891675 PMCID: PMC11171317 DOI: 10.3390/ani14111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
A total of 320 1-day-old broilers were randomly divided into five groups. The control group (CON) received a basal diet, while the FAP4, FAP2, and FAP1 groups were provided with the basal diet supplemented with 4%, 2%, and 1% fermented Astragalus powder, respectively. The unfermented Astragalus powder (UAP2) group was fed the basal diet supplemented with 2% UAP. Each group contained eight replicates of eight chicks each. The results revealed that the final BW and ADG in the FAP 1 and FAP2 were higher than those in the UAP2 and CON groups, while reducing F/G from day 14 to day 42. On day 42, the thymus index in the UAP and FAP groups as well as the bursa index in the FAP4 group showed significant increases compared to those in the CON group. Supplementation with 2% FAP elevated serum IgA levels in broilers on day 28 and day 42, and it also increased serum IgG levels on day 42. Furthermore, supplementation with 2% FAP elevated serum albumin (ALB) levels in broilers, while supplementation with 4% FAP increased serum (glucose) GLU levels in broilers on day 28. The serum biochemical parameters and pathological observation of the liver and kidney in the groups did not show any adverse effects on broilers' health. In addition, the serum total antioxidant capacity (T-AOC) level significantly increased in the FAP4 and FAP2 groups on day 28, and the malondialdehyde (MDA) level in both serum and liver tissue decreased in the FAP2 group on day 28 and day 42. Compared to the CON group, 2% FAP and 2% UAP supplementation reduced the relative abundance of Bacteroides and supplementation with 2% FAP increased the relative abundance of Alistipes on day 42. In conclusion, the dietary supplementation of FAP can enhance the growth performance, immune function, and antioxidant capacity and regulate microflora in broilers, of which 2% FAP is more effective. It indicates FAP exhibits significant application potential as a promising feed additive for broilers.
Collapse
Affiliation(s)
- Songwei Han
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Guowei Xu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Kang Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Saad Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Lei Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Fubin Chen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jiahui Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Xueyan Gu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jianxi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
| | - Jingyan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.H.)
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
5
|
Wang Q, Wang L, Li L, Sun M, Li P, Yu Y, Zhang Y, Xu Z, Gao P, Ma J, Liu X. Effects of dietary supplementation of fermented Artemisia argyi on growth performance, slaughter performance, and meat quality in broilers. Poult Sci 2024; 103:103545. [PMID: 38387294 PMCID: PMC10899031 DOI: 10.1016/j.psj.2024.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Artemisia argyi (AA) is promising as a potential feed additive. Microbial fermentation is beneficial to the degradation of cell walls and the better release of bioactive compounds of AA. However, there are few reports on the application of fermented AA as a feed additive for broilers. The present study intended to evaluate the application value of fermented AA as a feed additive for broilers by examining the effects of the dietary supplementation of Aspergillus niger-fermented AA and unfermented AA on growth performance, slaughter performance, and meat quality of brokers. A total of 360 newly hatched (1-day-old) broilers with similar body weight were randomly divided into the following 5 groups: basal diet group as control (C) group, basal diet +3% unfermented AA (E1) group, basal diet + 1% fermented AA (E2) group, basal diet + 3% fermented AA (E3) group, basal diet + 5% fermented AA (E4) group. Each group included 6 replicates with 12 broilers per replicate, and the feeding trail lasted for 48 d. Body weight and feed intake were recorded every 2 wk, and the feed gain ratio was calculated to assess growth performance. At 42 d, 6 broilers from each group were slaughtered, and the carcass traits were calculated. The results showed that compared with the control group, Aspergillus Niger could effectively destroy AA fiber, which contributed to better release of AA bioactive compounds. Moreover, dietary supplementation with AA could improve the growth performance of broilers (P < 0.05), and the effect of fermented AA was better than unfermented AA, especially 3% fermented AA. From 28 to 42 d, compared with the control group, the average daily gain of broilers in the group supplementation with 3% fermented AA was significantly increased (P < 0.05), and the feed-to-gain ratio was decreased (P < 0.05). At 42 d, the dressing percentage, half-eviscerated carcass percentage, eviscerated carcass percentage, and breast muscle percentage of broilers in the groups of 1, 3, and 5% fermented AA diets were significantly improved (P < 0.05), and the thigh muscle percentage of broilers in the group with 3% fermented AA diets was significantly improved (P < 0.05). Meanwhile, the meat quality of broilers in the group with fermented AA diets was also significantly improved. Birds in AA groups had higher a* value and lower shear force of breast muscle, especially the group supplementation with 3% fermented AA (P < 0.05). In conclusion, fermented AA has good application value as a potential feed additive for broilers, dietary supplementation of fermented AA can improve the production performance and meat quality of broiler chickens, of which 3% fermented AA is more effective.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Lingwei Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Mengqiao Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Peng Li
- College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China
| | - Xingyou Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; College of Life Science, Xinxiang University, Xinxiang 453003, Henan, China.
| |
Collapse
|
6
|
Li T, Qin W, Wu B, Jin X, Zhang R, Zhang J, Du L. Effects of glycyrrhiza polysaccharides on growth performance, meat quality, serum parameters and growth/meat quality-related gene expression in broilers. Front Vet Sci 2024; 11:1357491. [PMID: 38435364 PMCID: PMC10904541 DOI: 10.3389/fvets.2024.1357491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
With growing restrictions on the use of antibiotics in animal feed, plant extracts are increasingly favored as natural feed additive sources. Glycyrrhiza polysaccharide (GP), known for its multifaceted biological benefits including growth promotion, immune enhancement, and antioxidative properties, has been the focus of recent studies. Yet, the effects and mechanisms of GP on broiler growth and meat quality remain to be fully elucidated. This study aimed to investigate the effects of GP on growth, serum biochemistry, meat quality, and gene expression in broilers. The broilers were divided into five groups, each consisting of five replicates with six birds. These groups were supplemented with 0, 500, 1,000, 1,500, and 2,000 mg/kg of GP in their basal diets, respectively, for a period of 42 days. The results indicated that from day 22 to day 42, and throughout the entire experimental period from day 1 to day 42, the groups receiving 1,000 and 1,500 mg/kg of GP showed a significant reduction in the feed-to-gain ratio (F:G) compared to the control group. On day 42, an increase in serum growth hormone (GH) levels was shown in groups supplemented with 1,000 mg/kg GP or higher, along with a significant linear increase in insulin-like growth factor-1 (IGF-1) concentration. Additionally, significant upregulation of GH and IGF-1 mRNA expression levels was noted in the 1,000 and 1,500 mg/kg GP groups. Furthermore, GP significantly elevated serum concentrations of alkaline phosphatase (AKP) and globulin (GLB) while reducing blood urea nitrogen (BUN) levels. In terms of meat quality, the 1,500 and 2,000 mg/kg GP groups significantly increased fiber density in pectoral muscles and reduced thiobarbituric acid (TBA) content. GP also significantly decreased cooking loss rate in both pectoral and leg muscles and the drip loss rate in leg muscles. It increased levels of linoleic acid and oleic acid, while decreasing concentrations of stearic acid, myristic acid, and docosahexaenoic acid. Finally, the study demonstrated that the 1,500 mg/kg GP group significantly enhanced the expression of myogenin (MyoG) and myogenic differentiation (MyoD) mRNA in leg muscles. Overall, the study determined that the optimal dosage of GP in broiler feed is 1,500 mg/kg.
Collapse
Affiliation(s)
- Tiyu Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Weize Qin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Baiyila Wu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
7
|
Ma H, Chen Q, Yang H, Wan X. Effects of lycopene on the growth performance, meat quality, and antioxidant capacity of broiler chickens challenged with aflatoxin B 1. J Food Sci 2024; 89:96-103. [PMID: 37983886 DOI: 10.1111/1750-3841.16848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The present study aimed to investigate the effects of dietary lycopene (LYC) supplementation on the growth performance, meat quality, and antioxidant capacity of breast muscle in aflatoxin B1 (AFB1 )-challenged broilers. A total of 192 1-day-old healthy Arbor Acres broilers were randomly assigned to 3 treatments, each with 8 replicates (8 broilers per replicate). The broilers of the three treatments were fed a basal diet (control), a basal diet supplemented with 100 µg/kg AFB1 (CA), and a basal diet supplemented with 100 µg/kg AFB1 and 200 mg/kg LYC (CAL). The results demonstrated that the AFB1 diet increased the feed-to-gain (F/G) ratio (p < 0.05), yellowness and shear force of breast muscle (p < 0.05), and protein carbonyl (PC) content (p < 0.05) while decreasing the average daily gain (ADG) (p < 0.05), redness of breast muscle (p < 0.05), glutathione peroxidase activity (p < 0.05), and ability to clear OH· from breast muscle (p < 0.05) in comparison to the control group. Dietary LYC supplementation significantly decreased the F/G ratio (p < 0.05), yellowness and shear force (p < 0.05), and the content of PC and hydrogen peroxide (p < 0.05) while significantly increasing the ADG (p < 0.05), redness of breast muscle (p < 0.05), and ability of breast muscle to clear ABTS·+ (p < 0.05) compared to the CA diet. In conclusion, LYC can alleviate the negative impacts of AFB1 on the growth performance, meat quality, and antioxidant capacity of breast muscle in broilers. PRACTICAL APPLICATION: LYC, as a popular antioxidant, is beneficial to the growth and health of animals. The detailed application effects are still being investigated. In this study, by adding LYC to an AFB1 -contaminated diet, it was found that LYC could alleviate the adverse effects of AFB1 on the growth performance, meat quality, and muscle antioxidant capacity of broilers. These findings can provide a reference for the application of LYC and similar plant-derived materials in animal production.
Collapse
Affiliation(s)
- Huimin Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaoli Wan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Zhao J, Duan X, Yan S, Liu Y, Wang K, Hu M, Chai Q, Liu L, Ge C, Jia J, Dou T. Transcriptomics reveals the molecular regulation of Chinese medicine formula on improving bone quality in broiler. Poult Sci 2023; 102:103044. [PMID: 37717480 PMCID: PMC10507442 DOI: 10.1016/j.psj.2023.103044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Skeletal disorder is of concern to the poultry industry as it affects animal welfare and production performance. Traditional Chinese medicine could improve bone quality and reduce the incidence of bone disease, but the molecular regulation of Chinese medicine formula (CMF) on improving bone quality in broilers is still unclear. This study was performed to research the effects of CMF on skeletal performance of Cobb broilers and reveal the molecular regulation. A total of 120 one-day-old Cobb broilers were randomly allocated into 4 equal groups of 30 chickens, with 5 replicates and 6 chickens in each replicate. The control (CON) group was fed a diet without CMF, while the CMF1, CMF2, and CMF3 groups were supplemented with different CMF at 6,000 mg/kg diet, respectively. The broilers were raised to 60 d of age, then bone tissues were collected for biomechanical properties, micro-CT detection and transcriptomic sequencing analysis. The results showed that CMF3 improved the biomechanical properties of broiler tibia, via increasing the elastic modulus (P < 0.05), yield strength (P > 0.05), maximum stress (P < 0.05) and fracture stress (P < 0.05) of the tibia. Micro-CT analysis indicated that CMF3 increased the bone mineral density (BMD), bone volume/total volume (BV/TV), bone surface density (BS/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and decreased the trabecular separation (Tb.Sp) of femur cancellous bone (P < 0.05). RNA-seq analysis revealed 2,177 differentially expressed genes (DEGs) (|log2FoldChange| ≥ 1, FDR < 0.05) between the CMF3 group and CON group. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis showed 13 pathways mostly associated with bone growth and development and bone metabolism, and we identified 39 bone-related DEGs. This study suggests that CMF3 could improve bone strength and bone microstructure of broilers, and showed a positive effect on bone performance. Our research could provide a theoretical reference for the development of pollution-free feed additives to improve the skeletal performance of broilers, which could help promote healthy farming of chickens.
Collapse
Affiliation(s)
- Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Xiaohua Duan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China; Yunnan University of Chinese Medicine, 650500 Kunming, China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Mei Hu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Qian Chai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China; Yunnan Vocational and Technical College of Agriculture, 650031 Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201 Kunming, China.
| |
Collapse
|
9
|
Guo L, Chang Y, Sun Z, Deng J, Jin Y, Shi M, Zhang J, Miao Z. Effects of Chinese Yam Polysaccharide on Intramuscular Fat and Fatty Acid Composition in Breast and Thigh Muscles of Broilers. Foods 2023; 12:foods12071479. [PMID: 37048300 PMCID: PMC10094610 DOI: 10.3390/foods12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The purpose of this study is to evaluate the influences of Chinese yam polysaccharide (CYP) dietary supplementation on the composition of intramuscular fat (IMF) and fatty acids (FA) in thigh and breast muscles of broilers. Three hundred and sixty healthy one-day-old broilers (the breed of Crossbred chicken is named 817) with gender-balanced and similar body weight (39 ± 1 g) were randomly allocated into four groups (control, CYP1, CYP2, and CYP3 groups). Broilers in the control group were only fed a basal diet, and broilers in CYP1 group were fed the same diets further supplemented with 250 mg/kg CYP, the CYP2 group was fed the same diets further supplemented with 500 mg/kg CYP, and the CYP3 group was fed the same diets further supplemented with 1000 mg/kg CYP, respectively. Each group consisted of three replicates and each replicate consisted of 30 birds. The feeding days were 48 days. The results observed that the CYP2 group (500 mg/kg) can up-regulate the mRNA expression levels of β-catenin in thigh muscle compared to the control group. At the same time, all CYP groups (CYP1, CYP2, and CYP3 groups) can up-regulate mRNA expression of Wnt1 and β-catenin in breast muscle, while mRNA expression of PPARγ and C/EBPα in breast and thigh muscles could be down-regulated (p < 0.05). In summary, 500 mg/kg of CYP dietary supplementation can reduce IMF content and improve the FAs composition, enhancing the nutritional value of chicken meat.
Collapse
Affiliation(s)
- Liping Guo
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yadi Chang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhe Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiahua Deng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Jin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Mingyan Shi
- College of Life Science, Luoyang Normal University, Jiqing Road, Luoyang 471022, China
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence: ; Tel.: +86-373-3040718; Fax: +86-373-3040718
| |
Collapse
|