1
|
Kumar N, Marée R, Geurts P, Muller M. Recent Advances in Bioimage Analysis Methods for Detecting Skeletal Deformities in Biomedical and Aquaculture Fish Species. Biomolecules 2023; 13:1797. [PMID: 38136667 PMCID: PMC10742266 DOI: 10.3390/biom13121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Detecting skeletal or bone-related deformities in model and aquaculture fish is vital for numerous biomedical studies. In biomedical research, model fish with bone-related disorders are potential indicators of various chemically induced toxins in their environment or poor dietary conditions. In aquaculture, skeletal deformities are affecting fish health, and economic losses are incurred by fish farmers. This survey paper focuses on showcasing the cutting-edge image analysis tools and techniques based on artificial intelligence that are currently applied in the analysis of bone-related deformities in aquaculture and model fish. These methods and tools play a significant role in improving research by automating various aspects of the analysis. This paper also sheds light on some of the hurdles faced when dealing with high-content bioimages and explores potential solutions to overcome these challenges.
Collapse
Affiliation(s)
- Navdeep Kumar
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Raphaël Marée
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Pierre Geurts
- Department of Computer Science and Electrical Engineering, Montefiore Institute, University of Liège, 4000 Liège, Belgium; (R.M.); (P.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
2
|
Mhalhel K, Levanti M, Abbate F, Laurà R, Guerrera MC, Aragona M, Porcino C, Pansera L, Sicari M, Cometa M, Briglia M, Germanà A, Montalbano G. Skeletal Morphogenesis and Anomalies in Gilthead Seabream: A Comprehensive Review. Int J Mol Sci 2023; 24:16030. [PMID: 38003219 PMCID: PMC10671147 DOI: 10.3390/ijms242216030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The gilthead seabream, one of the most important species in Mediterranean aquaculture, with an increasing status of exploitation in terms of production volume and aquafarming technologies, has become an important research topic over the years. The accumulation of knowledge from several studies conducted during recent decades on their functional and biological characteristics has significantly improved their aquacultural aspects, namely their reproductive success, survival, and growth. Despite the remarkable progress in the aquaculture industry, hatchery conditions are still far from ideal, resulting in frequent abnormalities at the beginning of intensive culture, entailing significant economic losses. Those deformities are induced during the embryonic and post-embryonic periods of life, and their development is still poorly understood. In the present review, we created a comprehensive synthesis that covers the various aspects of skeletal morphogenesis and anomalies in the gilthead seabream, highlighting the genetic, environmental, and nutritional factors contributing to bone deformities and emphasized the potential of the gilthead seabream as a model organism for understanding bone morphogenesis in both aquaculture and translational biological research. This review article addresses the existing lack in the literature regarding gilthead seabream bone deformities, as there are currently no comprehensive reviews on this subject.
Collapse
Affiliation(s)
- Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Lidia Pansera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Mirea Sicari
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, Via Palatucci Snc, University of Messina, 98168 Messina, Italy
| |
Collapse
|
3
|
Dellacqua Z, Di Biagio C, Costa C, Pousão-Ferreira P, Ribeiro L, Barata M, Gavaia PJ, Mattei F, Fabris A, Izquierdo M, Boglione C. Distinguishing the Effects of Water Volumes versus Stocking Densities on the Skeletal Quality during the Pre-Ongrowing Phase of Gilthead Seabream ( Sparus aurata). Animals (Basel) 2023; 13:ani13040557. [PMID: 36830345 PMCID: PMC9951685 DOI: 10.3390/ani13040557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Gilthead seabream (Sparus aurata) production is a highly valued aquaculture industry in Europe. The presence of skeletal deformities in farmed gilthead seabream represents a major bottleneck for the industry leading to economic losses, negative impacts on the consumers' perception of aquaculture, and animal welfare issues for the fish. Although past work has primarily focused on the hatchery phase to reduce the incidence of skeletal anomalies, this work targets the successive pre-ongrowing phase in which more severe anomalies affecting the external shape often arise. This work aimed to test the effects of: (i) larger and smaller tank volumes, stocked at the same density; and (ii) higher and lower stocking densities maintained in the same water volume, on the skeleton of gilthead seabream fingerlings reared for ~63 days at a pilot scale. Experimental rearing was conducted with gilthead seabream juveniles (~6.7 ± 2.5 g), which were selected as 'non-deformed' based on external inspection, stocked at three different densities (Low Density (LD): 5 kg/m3; Medium Density (MD): 10 kg/m3; High Density (HD): 20 kg/m3) in both 500 L and 1000 L tanks. Gilthead seabream were sampled for growth performance and radiographed to assess the skeletal elements at the beginning and end of the experimental trial. Results revealed that (i) LD fish were significantly longer than HD fish, although there were no differences in final weights, regardless of the water volume; (ii) an increase in the prevalence of seabream exhibiting cranial and vertebral axis anomalies was found to be associated with increased density. These results suggest that farmers can significantly reduce the presence of some cranial and axis anomalies affecting pre-ongrown gilthead seabream by reducing the stocking density.
Collapse
Affiliation(s)
- Zachary Dellacqua
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- Ecoaqua Institute, University of Las Palmas de Gran Canaria, 35214 Telde, Gran Canaria, Spain
- Correspondence: ; Tel.: +39-351-857-0196
| | - Claudia Di Biagio
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- Laboratory of Evolutionary Developmental Biology, University of Ghent, 9000 Ghent, Belgium
| | - Corrado Costa
- CREA—Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA)—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Rome, Italy
| | - Pedro Pousão-Ferreira
- IPMA—Instituto Portugues do Mar e Atmosfera—Research Station, 8700-305 Olhão, Portugal
| | - Laura Ribeiro
- IPMA—Instituto Portugues do Mar e Atmosfera—Research Station, 8700-305 Olhão, Portugal
| | - Marisa Barata
- IPMA—Instituto Portugues do Mar e Atmosfera—Research Station, 8700-305 Olhão, Portugal
| | - Paulo J. Gavaia
- CCMAR—Centre of Marine Sciences, University of the Algarve, 8005-139 Faro, Portugal
| | - Francesco Mattei
- UMR 7093, Laboratoire d’Oceanographie de Villefranche (LOV), Sorbonne University, 06230 Villefranche-sur-Mer, France
| | - Andrea Fabris
- Associazione Piscicoltori Italiani, 37135 Verona, Italy
| | - Marisol Izquierdo
- Ecoaqua Institute, University of Las Palmas de Gran Canaria, 35214 Telde, Gran Canaria, Spain
| | - Clara Boglione
- Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| |
Collapse
|