1
|
Chu Y, Yu A, Wang H, Rajput SA, Yu Q, Qi D. Biological Mechanisms of Aflatoxin B 1-Induced Bile Metabolism Abnormalities in Ducklings. Animals (Basel) 2024; 14:2996. [PMID: 39457926 PMCID: PMC11506432 DOI: 10.3390/ani14202996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the effects and biological mechanisms of aflatoxin B1 (AFB1) on the health and bile metabolism of ducklings. Forty-eight 1-day-old ducklings were randomly assigned to two groups, with six replicates per group. The control group was fed a basic diet, while the AFB1 group received a diet containing 90 µg/kg of AFB1. The experiment lasted for 2 weeks. The results showed that 90 µg/kg AFB1 caused abnormal bile metabolism; damaged liver cell nuclei and mitochondria; and significantly decreased body weight, average daily weight gain, and levels of albumin, total protein, cholesterol, total superoxide dismutase, glutathione peroxidase, and glutathione. It also significantly increased feed conversion efficiency, along with alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bile acids, and malondialdehyde levels. In the liver, the expression levels of CYP7A1, SCD, and other genes were significantly upregulated, while BSEP, FASN, HMGCR, CAT, and other genes were significantly downregulated. In conclusion, AFB1 causes abnormal bile metabolism and impairs the overall health and liver function of ducklings. Its mechanism of action may involve changes in gene expression related to bile acid metabolism, lipid metabolism, oxidative damage, and cancer pathways.
Collapse
Affiliation(s)
- Yihong Chu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Aimei Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Qianqian Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (A.Y.); (H.W.); (Q.Y.)
| |
Collapse
|
2
|
Yu A, Wang H, Cheng Q, Rajput SA, Qi D. The Effects of Aflatoxin B 1 on Liver Cholestasis and Its Nutritional Regulation in Ducks. Toxins (Basel) 2024; 16:239. [PMID: 38922135 PMCID: PMC11209606 DOI: 10.3390/toxins16060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 μg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis.
Collapse
Affiliation(s)
- Aimei Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| | - Qianhui Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (A.Y.); (H.W.); (Q.C.)
| |
Collapse
|
3
|
Wang H, An Y, Rajput SA, Qi D. Resveratrol and (-)-Epigallocatechin-3-gallate Regulate Lipid Metabolism by Activating the AMPK Pathway in Hepatocytes. BIOLOGY 2024; 13:368. [PMID: 38927248 PMCID: PMC11201192 DOI: 10.3390/biology13060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The purpose of this study was to explore the effects of Res and EGCG on cell growth, cellular antioxidant levels, and cellular lipid metabolism in hepatocytes. In this experiment, leghorn male hepatoma (LMH) cells were used as hepatocytes. The results showed that 6.25-25 μM Res and EGCG had no adverse effects on cell viability and growth. Meanwhile, with the increasing dosage of Res and EGCG, the contents of total cholesterol (TC), total glyceride (TG), and malondialdehyde (MDA) in hepatocytes decreased significantly (p < 0.05), while the contents of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), and catalase (CAT) increased significantly (p < 0.05). In addition, western blot results showed that Res and EGCG could significantly increase the expression of p-AMPK protein and reduce the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) protein in hepatocytes (p < 0.05). Moreover, q-PCR results showed that with the increase in Res and EGCG, the expression of cholesterol- and fatty acid synthesis-related genes decreased significantly (p < 0.05). In conclusion, Res and EGCG can increase the antioxidant capacity of hepatocytes and reduce the synthesis of TC and TG in hepatocytes by activating AMPK, thereby regulating lipid metabolism in hepatocytes.
Collapse
Affiliation(s)
- Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| | - Shahid Ali Rajput
- Department of Animal and Dairy Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (Y.A.)
| |
Collapse
|
4
|
Abd El-Hack ME, AboElMaati MF, Abusudah WF, Awlya OF, Almohmadi NH, Fouad W, Mohamed HS, Youssef IM, Al-Gabri NA, Othman SI, Allam AA, Taha AE, Tellez-Isaias G, Mansour AM. Consequences of dietary cinnamon and ginger oils supplementation on blood biochemical parameters, oxidative status, and tissue histomorphology of growing Japanese quails. Poult Sci 2024; 103:103314. [PMID: 38096669 PMCID: PMC10762477 DOI: 10.1016/j.psj.2023.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
The present study aimed to investigate the impact of various concentrations of ginger and cinnamon oils as antibiotic substitutes on some blood biochemical parameters, antioxidant capacity, and histopathological profile of the liver and gut of growing Japanese. A total of 900 Japanese quails were randomly allotted into 6 treatment groups. Each group had 5 replicates (30 chicks each). The first group received a basal diet and served as the control, while the second received a basal diet plus 0.5 g of colistin antibiotic/kg diet. The third and fourth groups were supplemented with 0.5 mL and 1.0 mL of ginger oil (GO)/kg diet, respectively. While the fifth and sixth groups received basal diet with 0.5 and 1.0 mL of cinnamon oil (CO)/kg diet, respectively. Results showed that adding herbal oils significantly (P < 0.05) decreased the aspartate aminotransferase (AST) and urea levels compared to control and colistin groups. Various levels of GO and CO significantly (P < 0.05) reduced cholesterol levels compared to control birds. Compared to the control and antibiotic groups, Japanese quails supplemented with various levels of herbal oils (GO and CO) had more extraordinarily significant (P < 0.05) values for total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GSR). Regarding histopathologic examination, the jejunum displayed a nearly empty lumen, a few fusions, and mild goblet cell metaplasia. On the other hand, the duodenum looked tall and had a few fusions of villi and remnants of removal in its lumina. It could be concluded that cinnamon and GO improved birds' blood biochemical parameters, electorate oxidative stress, and enhanced intestinal and hepatic histology of the treated quails. Also, the levels of 0.5 mL CO and 0.5 mL GO may be an acceptable substitute for antibiotics (colistin) in the diets of growing Japanese quail.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed F AboElMaati
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Wafaa F Abusudah
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ohaad F Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Walid Fouad
- Poultry Production Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
| | - Hanan S Mohamed
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza 12618, Egypt
| | - Islam M Youssef
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza 12618, Egypt
| | - Naif A Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabi; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211 Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Behira, Rasheed, 22758 Edfina, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701 USA
| | - Amira M Mansour
- Poultry Production Department, Agriculture College, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Wang H, Wang L, Tian C, Rajput SA, Qi D. Effects of Methyl Sulfonyl Methane and Selenium Yeast on Fatty Liver Syndrome in Laying Hens and Their Biological Mechanisms. Animals (Basel) 2023; 13:2466. [PMID: 37570275 PMCID: PMC10416963 DOI: 10.3390/ani13152466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to explore the effects of MSM and Se-Y on FLS in laying hens during the late peak laying period and the underlying biological mechanisms. Therefore 240 55-week-old Jing-fen No. 6 laying hens were randomly divided into five groups, with eight replicates in each group and six laying hens in each replicate. The hens were fed a basal diet (Control) and diets supplemented with 350 and 700 mg/kg MSM and 25 and 50 mg/kg Se-Y, respectively, for four weeks. The results showed that MSM and Se-Y had no significant effects on the performance of laying hens. With the increasing dosage of MSM and Se-Y, the symptoms of liver steatosis in laying hens were reduced, and MSM and Se-Y could significantly reduce the content of malondialdehyde (MDA) in serum and liver (p < 0.05) and increase the contents of total superoxide dismutase (T-SOD) and glutathione peroxidase (GPX) in serum and liver (p < 0.05). The RNA-seq results showed that 700 mg/kg MSM significantly downregulated the expression levels of the ATP5I, ATP5G1, CYCS, and UQCRQ genes in the liver, and 50 mg/kg Se-Y significantly downregulated the expression levels of MAPK10, SRC, BMP2, and FGF9 genes in the liver. In conclusion, dietary supplementation with MSM and Se-Y can effectively reduce the FLS of laying hens in the late peak laying period and increase their antioxidant capacity. The underlying biological mechanism may be related to the downregulation of genes involved in liver oxidative phosphorylation and inflammation-related pathways.
Collapse
Affiliation(s)
- Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Lingfeng Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Changyu Tian
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.W.); (L.W.); (C.T.)
| |
Collapse
|